

Mechanically Persistent Oscillator Supplied With Ramp Signal

Rohit Gupta^{1*©}

¹Yogananda College of Engineering and Technology, Jammu Gurha Brahmana Patoli Akhnoor Road, Jammu (J&K), 181205, India

*Corresponding Author: Rohit Gupta

DOI: https://doi.org/10.55145/ajest.2023.02.02.014 Received January 2023; Accepted March 2023; Available online April 2023

ABSTRACT: This paper submits a new tactic known as the integral Rohit transform (RT) for uncovering the response of a mechanically persistent oscillator supplied with a ramp signal. It let outs that RT is an operative tool for uncovering the response of a mechanically persistent oscillator supplied with a ramp signal.

Keywords: RT, mechanically persistent oscillator, Ramp Signal

1. INTRODUCTION

The ramp signal (shown in the figure above) is explicated as:

 $F(t) = t for 0 < t < t_1$ = $F_o for t \ge t_1$.

The author Rohit Gupta has proffered the integral RT in recent years [1, 2]. The RT is explicated as $R{g(t)} = G(q) = q^2 \int_0^{\infty} e^{-qt} g(t) dt$. Here $t \ge 0$ and the integral is merging. A unit step function [3] is explicated as U(t - a) = 0 for t < a and 1 for $t \ge a$. The RT of a unit step function is stated as

$$R\{U(t-c)\} = q^{3} \int_{0}^{\infty} e^{-qt} U(t-c) dt$$
$$R\{U(t-c)\} = q^{3} \int_{0}^{\infty} e^{-qt} dt$$
$$R\{U(t-c)\} = q^{2} e^{-qc}$$

†Q*rresponding author: guptarohit565@gmail.com* http://journal.alsalam.edu.iq/index.php/ajest

Shifting property of RT:
If
$$R\{g(t)\} = G(q)$$
, then $R[g(t-c)U(t-c) = e^{-qc}G(q)$.
Proof:
 $R[g(t-c)U(t-c) = q^3 \int_0^\infty e^{-qt} g(t-c)U(t-c)dt$
 $R[g(t-c)U(t-c) = q^3 \int_c^\infty e^{-qt} g(t-c)dt$
 $R[g(t-c)U(t-c) = q^3 \int_0^\infty e^{-q(v+c)} g(v)dv$, where $v = t-c$
 $R[g(t-c)U(t-c) = e^{-q(c)} q^3 \int_0^\infty e^{-q(v)} g(v)dv$
 $R[g(t-c)U(t-c) = e^{-q(c)} q^3 \int_0^\infty e^{-q(t)} g(t)dt$
 $R[g(t-c)U(t-c) = e^{-q(c)} G(q)$

The RT of some basic functions is stated as

- $R \{sinct\} = \frac{c q^3}{q^2 + c^2},$ $R \{cosct\} = \frac{q^4}{q^2 + c^2},$

The RT of some derivatives is explicated as $R \{g'(t)\} = qR\{g(t)\} - q^3g(0),$ $R\{g''(t)\} = q^2R\{g(t)\} - q^4g(0) - q^3g'(0),$ and so on.

2. METHODOLOHY

A mechanically persistent oscillator [4, 5] supplied with ramp signal is specified by the following equation: $m\ddot{y}(t) + ky(t) = F(t)$

Or

$$\ddot{y}(t) + \omega_0^2 y(t) = \frac{F(t)}{m} \dots (1)$$

where
$$\omega_0 = \sqrt{\frac{k}{m}}$$
, $F(t)$ is a ramp signal, $y(0) = 0$ and $\dot{y}(0) = 0$.

The RT of (1) provides

The KT of (1) provides

$$q^2 \bar{y}(q) - q^4 y(0) - q^3 \dot{y}(0) + \omega_0^2 \bar{y}(q) = \frac{1}{m} q^3 \int_0^\infty e^{-qt} F(t) dt$$

 $\Rightarrow q^2 \bar{y}(q) - q^4 y(0) - q^3 \dot{y}(0) + \omega_0^2 \bar{y}(q) = \frac{1}{m} q^3 \int_0^{t_1} e^{-qt} t dt + \frac{F_o}{m} q^3 \int_{t_1}^\infty e^{-qt} dt$
Here $\bar{y}(q)$ denotes the RT of $y(t)$.
Put $y(0) = 0$ and $\dot{y}(0) = 0$ [3], we get

$$\begin{aligned} q^{2}\bar{\mathbf{y}}(\mathbf{q}) &= \mathbf{b} \ \text{and} \ \mathbf{y}(\mathbf{q}) = \frac{1}{m} q^{3} \int_{0}^{t_{1}} e^{-qt} t \, dt + \frac{F_{0}}{m} q^{3} \int_{t_{1}}^{\infty} e^{-qt} \, dt \\ &\Rightarrow q^{2}\bar{\mathbf{y}}(\mathbf{q}) + \omega_{0}^{2}\bar{\mathbf{y}}(\mathbf{q}) = -\frac{1}{m} q^{2}[t_{1}e^{-qt_{1}}] + \frac{1}{m} q^{2} \int_{0}^{t_{1}} e^{-qt} \, dt - q^{2} \frac{F_{0}}{m} [e^{-qt_{1}}] \\ &\Rightarrow q^{2}\bar{\mathbf{y}}(\mathbf{q}) + \omega_{0}^{2}\bar{\mathbf{y}}(\mathbf{q}) = -\frac{1}{m} q^{2}[t_{1}e^{-qt_{1}}] - \frac{1}{m} q[e^{-qt_{1}} - 1] - q^{2} \frac{F_{0}}{m} [e^{-qt_{1}}] \\ &\Rightarrow q^{2}\bar{\mathbf{y}}(\mathbf{q}) + \omega_{0}^{2}\bar{\mathbf{y}}(\mathbf{q}) = -\frac{1}{m} \{q^{2}t_{1}e^{-qt_{1}} - qe^{-qt_{1}} + q - q^{2}F_{0}e^{-qt_{1}}\} \\ &\Rightarrow q^{2}\bar{\mathbf{y}}(\mathbf{q}) + \omega_{0}^{2}\bar{\mathbf{y}}(\mathbf{q}) = -\frac{1}{m} \{q^{2}t_{1}e^{-qt_{1}} - qe^{-qt_{1}} + q - q^{2}F_{0}e^{-qt_{1}}\} \end{aligned}$$

$$\Rightarrow \bar{\mathbf{y}}(\mathbf{q}) = \frac{1}{m} \left\{ \frac{q^2}{(q^2 + \omega_0^2)} F_o e^{-qt_1} + \frac{q}{(q^2 + \omega_0^2)} e^{-qt_1} - \frac{q}{(q^2 + \omega_0^2)} - \frac{q^2 t_1 e^{-qt_1}}{(q^2 + \omega_0^2)} \right\}$$

$$\Rightarrow \bar{\mathbf{y}}(\mathbf{q}) = \frac{1}{m} \left\{ \frac{q^4}{q^2(q^2 + \omega_0^2)} F_o e^{-qt_1} + \frac{q^3}{q^2(q^2 + \omega_0^2)} e^{-qt_1} - \frac{q^3}{q^2(q^2 + \omega_0^2)} - \frac{q^4}{q^2(q^2 + \omega_0^2)} t_1 e^{-qt_1} \right\}$$

$$\Rightarrow \bar{\mathbf{y}}(\mathbf{q}) = \frac{1}{m} \left\{ \frac{q^2}{(\omega_0^2)} F_o e^{-qt_1} - \frac{q^4}{(\omega_0^2)(q^2 + \omega_0^2)} F_o e^{-qt_1} + \frac{q}{(\omega_0^2)} e^{-qt_1} - \frac{q^2}{(\omega_0^2)} t_1 e^{-qt_1} + \frac{q^3}{(\omega_0^2)(q^2 + \omega_0^2)} F_o e^{-qt_1} + \frac{q^3}{(\omega_0^2)(q^2 + \omega_0^2)} t_1 e^{-qt_1} + \frac{q^4}{(\omega_0^2)(q^2 + \omega_0^2)} t_1 e^{-qt_1} \right\}$$

Applying inverse RT, we get

$$\begin{aligned} &\text{Applying inverse RT, we get} \\ &y(t) = \frac{1}{m} \Biggl\{ \frac{F_o}{(\omega_0{}^2)} U(t-t_1) - \frac{F_o \cos \omega_0 (t-t_1)}{(\omega_0{}^2)} U(t-t_1) + \frac{(t-t_1)}{(\omega_0{}^2)} U(t-t_1) \\ &\quad - \frac{\sin \omega_0 (t-t_1)}{\omega_0 (\omega_0{}^2)} U(t-t_1) - \frac{(t)}{(\omega_0{}^2)} + \frac{\sin \omega_0 (t)}{\omega_0 (\omega_0{}^2)} - \frac{t_1}{(\omega_0{}^2)} U(t-t_1) \\ &\quad + \frac{t_1 \cos \omega_0 (t-t_1)}{(\omega_0{}^2)} U(t-t_1) \Biggr\} \end{aligned}$$

$$\Rightarrow y(t) = \frac{1}{m(\omega_0{}^2)} \Biggl\{ F_o U(t-t_1) - F_o \cos \omega_0 (t-t_1) U(t-t_1) + (t-t_1) U(t-t_1) \\ &\quad - \frac{\sin \omega_0 (t-t_1)}{\omega_0} U(t-t_1) - t + \frac{\sin \omega_0 (t)}{\omega_0} - t_1 U(t-t_1) \\ &\quad + t_1 \cos \omega_0 (t-t_1) U(t-t_1) \Biggr\} \end{aligned}$$

$$\Rightarrow y(t) = \frac{1}{k} \Biggl\{ F_o U(t-t_1) - F_o \cos \omega_0 (t-t_1) U(t-t_1) + (t-t_1) U(t-t_1) \\ &\quad + t_1 \cos \omega_0 (t-t_1) U(t-t_1) \Biggr\} \end{aligned}$$

For
$$t < t_1$$
,

$$y(t) = \frac{1}{k} \left[-t + \frac{\sin \omega_0 t}{\omega_0} \right]$$
Or

$$y(t) = \frac{1}{k} \left[\frac{\sin \omega_0 t}{\omega_0} - t \right]$$

For
$$t > t_1$$
,

$$y(t) = \frac{1}{k} \left\{ F_o - F_o \cos \omega_0 (t - t_1) - \frac{\sin \omega_0 (t - t_1)}{\omega_0} + \frac{\sin \omega_0 (t)}{\omega_0} - 2t_1 + t_1 \cos \omega_0 (t - t_1) \right\}$$
Or

$$y(t) = \frac{1}{k} \left\{ F_o[1 - \cos \omega_0 (t - t_1)] - \frac{1}{\omega_0} [\sin \omega_0 (t - t_1) - \sin \omega_0 (t)] - t_1 [2 - t_1 \cos \omega_0 (t - t_1)] \right\}$$

3. CONCLUSION

This paper has typified the RT for uncovering the response of a mechanically persistent oscillator supplied with a ramp signal. A new tactic has been fruitfully drawn on for uncovering the response of a *mechanically* persistent oscillator supplied with a ramp signal.

FUNDING

No funding received for this work

ACKNOWLEDGEMENT

The author would like to thank Prof. Dinesh Verma for his guidance.

CONFLICTS OF INTEREST

The author declares no conflict of interest

REFERENCES

- [1] Rohit Gupta et al 2022 J. Phys.: Conf. Ser. 2325 012036. Doi: 10.1088/1742-6596/2325/1/012036
- [2] R. Gupta, R. Gupta. 'Response of a Permanent Magnet Moving Coil Instrument via the Application of Rohit Transform', Engineering & Scientific International Journal (ESIJ), 8(2), 2021, 42-44.
- [3] H.K. Dass. Mathematical Physics. Publisher: S. Chand & Company Ltd., 2014.
- [4] R. Gupta, R. Gupta, S. Rajput. 'Analysis of Damped Harmonic Oscillator by Matrix Method', IJRAR, 5(4), 2018, 479-484.
- [5] Anuradha S. Deshpande. 'Transient Analysis of R-L-C Series Circuit to Step voltage by Engineering Method', International Journal of Computational and Applied Mathematics, 9(2), 2014, pp. 63-70