
    

 

 

*Corresponding author: rasheed.mohammed40@yahoo.com 
http://journal.alsalam.edu.iq/index.php/ajest  

157 

Al-Salam Journal for Engineering and Technology 
Journal Homepage: http://journal.alsalam.edu.iq/index.php/ajest 

e-ISSN: 2790-4822p-ISSN: 2958-0862 
 

 

 
 

 

The conjugate gradient approach to solve two dimensions 

linear elliptic boundary value equations as a prototype of the 
reaction diffusion system  

 
 

Ahmed Shawki Jaber1 , Mohammed RASHEED2, 3 *, Tarek Saidani4  
 
1Mathematics Science Department, College of Science, Mustansiriyah University, Baghdad, Iraq . 
2Applied Sciences Department, University of Technology, Baghdad, Iraq. 
3MOLTECH Anjou, Universite d’Angers/UMR CNRS 6200, 2, Bd Lavoisier, 49045 Angers, France. 
4Department of Physics, Akli Mohaned Oulhadj University of Bouira, Bouira, 10000, Algeria. 

 
 

*Corresponding Author: Mohammed RASHEED 
 

DOI: https://doi.org/10.55145/ajest.2024.03.01.014 
Received November 2023; Accepted January 2024; Available online January 2024 

  

1. INTRODUCTION 

Reaction–diffusion systems (RDs) are mathematical representations of a variety of physical processes. The most 

common is the changing in the concentration of one or more chemicals over time and space: local chemical reactions, 
in which the chemicals are converted to one another; and diffusion, in which the chemicals disperse throughout the 

surface of the space. Reaction–diffusion systems are often utilized in chemistry [1]. However, the system may also be 
used to explain non-chemical dynamical processes. Ecology, physics (neutron diffusion theory), biology, and Geology, 
all provide examples [2-4]. Systems of reaction–diffusion are mathematically represented by semi-linear parabolic 

differential equations with partial coefficients [5].  
A partial differential equation (PDE) is an equation that enforces relationships between a function's multiple partial 

derivatives [6]. The function is often seen as a "unknown" variable that needs resolution, analogous to how  is 

regarded as an unknown quantity in an algebraic problem that requires resolution. However, unambiguous formulae for 
partial differential equation solutions are sometimes hard to write down. As a result, a substantial amount of current 

mathematics and scientific research has been conducted on approaches for computer-aided numerical approximation of 
solutions to certain partial differential equations. The study of partial differential equations is a substantial component 
of pure mathematics, where the traditional focus is on identifying the general qualitative properties of solutions to 
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crucial model in physics and chemistry, with applications ranging from pattern formation to material science. 
Focusing on addressing a stationary linear elliptic problem within a rectangular domain, boundary conditions are 
determined through a finite-difference formulation. The Conjugate-Gradient Method is employed for the numerical 

solution, facilitating efficient computation. Key findings are elucidated: Firstly, the grid size for the symmetric 
matrix A is intricately linked to a bijective function, enabling the transition of indices to grid points. Notably, the 
solution to this elliptic problem exhibits a concave-up profile. Secondly, various solvers such as the Conjugate 

Gradient, Gauss-Seidel, and Jacobi techniques are viable, with the Conjugate Gradient method chosen for its 
superior accuracy, especially when considering computational efficiency. Moreover, the relationship between grid 

size and solution accuracy is explored, revealing a proportional dependence. Refinement of the grid leads to 

increased iteration counts but reduced implementation time, owing to the linearity of the function . The 

convergence criterion ensures high accuracy in solutions, as demonstrated in the provided figures. 

Keywords: 2D, elliptic boundary, reaction diffusion, system, gradient   

mailto:rasheed.mohammed40@yahoo.com
https://orcid.org/0000-0002-2919-2574
https://orcid.org/0000-0002-0768-2142
https://orcid.org/0000-0002-7727-4734
https://doi.org/10.55145/ajest.2024.03.01.014


Ahmed Shawki Jaber et al., Al-Salam Journal for Engineering and Technology Vol. 3 No. 1 (2024) p. 157-168 
 

 

 158 

diverse partial differential equations [7]. The existence and smoothness of solutions to the Navier-Stokes equations, 
which were chosen as a Millennium Prize Problem in 2000, remain unresolved among several unaddressed concerns. In 

quantitatively oriented scientific subjects such as engineering and physics, partial different ial equations are prevalent. 
These concepts, such as the Schrödinger equation and the Pauli equation, play a crucial role in the development of 
modern scientific understanding in several fields including sound, heat, diffusion, electrostatics, electrodynamics, 

thermodynamics, fluid dynamics, elasticity, general relativity, and quantum mechanics [8-13]. Additionally, these 
concepts arise from a range of mathematical concerns, including differential geometry and the calculus of variations. 

Notably, they are used to establish the Poincaré conjecture within the realm of geometric topology, among other 
significant applications [14]. The presence of many sources has contributed to the existence of a wide range of unique 
types of partial differential equations. Consequently, several strategies have been developed to address the particular 

difficulties that arise from these equations. As such, it is generally accepted that there is no "universal theory" of partia l 
differential equations, with expert knowledge separated into multiple basically independent subfields [15]. The 
categories of partial differential equations include ordinary differential equations, which pertain to functions of a 

solitary variable. In 2020, the most actively studied extensions of the "PDE" paradigm are stochastic partial differential 
equations and nonlocal equations [16]. A variety of subjects, including as elliptic and parabolic partial differential 

equations, fluid mechanics, Boltzmann equations, and dispersive partial differential equations, fall within the category 
of classical themes. The aforementioned themes remain the focus of current academic inquiry [17].  

Boundary value difficulties occur in several disciplines of physics, as they occur in every physical differential 

equation [18]. The use of boundary value issues is often employed in order to tackle difficulties associated with the 
wave equation, such as the identification of normal modes. The Sturm-Liouville problems represent a substantial 
category of boundary value problems. The analysis of these circumstances involves the use of the eigenfunctions of a 

differential operator. In order for a boundary value problem to be applicable, it is essential that it be well-posed. This 
suggests that, given the input of the issue, there is a s ingular solution that is infinitely dependent on the input. A 

significant amount of theoretical research in the field of partial differential equations focuses on determining the degree 
to which boundary value problems arise in both scientific and practical scenarios. The Dirichlet problem, which 
included the determination of harmonic functions (solutions to Laplace's equation), was one of the first boundary value 

difficulties investigated. The Dirichlet principle was found to offer the solution to this problem [19]. 
To handle boundary value problems numerically, one might refer to the finite-difference methods (FDM). These 

methods consist of a set of numerical techniques that aim to solve differential equations by approximating derivatives 

using finite differences [20]. Discreteization is used to estimate the solution value at specified locations, including both 
the geographical domain and, if appropriate, the time period. The process entails partitioning the domain into a limited 

number of iterations and resolving algebraic equations that include finite disparities and values derived from adjacent 
spots. Finite difference methods are used to transform nonlinear ordinary differential equations (ODE) or partial 
differential equations (PDE) into a system of linear equations that may be solved using matrix algebra techniques. 

Contemporary numerical analysis has seen the widespread use of Finite Difference Method (FDM) due to its efficient 
execution of linear algebra computations, as well as its relatively simple implementation [21]. Along with finite 
element techniques, FDM are one of the most frequently used ways for numerical solution of PDEs nowadays. At 

present, several methods are used to solve nonlinear equations [22-40]. 
This work aims to find the numerical solution of an RD system in 2D by using the conjugate-gradient method 

when considering linear elliptic equations. However, the organizations of the present work in the following manner: 
section 3, a brief introduction to the Reaction-Diffusion system with two variables of unknowns has been investigated. 
In section 4, we explore how to discretize RD in two dimensions. In Section 5, the Conjugate-Gradient algorithm is 

shown as a numerical solver for the RD system. Section 6 deals with a specific type of RD system, namely the linear 
elliptic equation, which is solved using conjugate-gradient algorithms. Finally, section 7 concludes the paper. 

 

2. Methodology 

2.1  Reaction-Diffusion Problems 

It is most normal for reaction-diffusion equations (RD) to appear in frameworks containing numerous collaboration 
components (e.g., chemical responses). These equations are commonly used to depict pattern -formation phenomena 

across a variety of natural, chemical, and physical frameworks. 
A one-dimensional reaction-diffusion equation comprises a response and a diffusion component, and so has the 

following typical structure: 

                                                                                                                                                (1) 

where   and  is a state variable that depicts substance or population density, etc., at a 

position  at time t (  is an unrestricted set).  signifies the Laplace operator.  
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The first term on the right facets denotes "diffusion," with  denoting the diffusion coefficient. For additional 

requirements,  is also represented as a diagonal diffusion matrix. The second term, , is a simple feature that 
refers to procedures that really "alter" the current u, i.e., something occurs to it (birth, death, chemical reaction, … etc.), 
rather than just spread in space. Additionally, it is feasible that the response term is dependent not only on u, but also on 

its principal subsidiary, i.e., and explicitly on . The 1-dimensional model of RD is of the shape [41]. 

                                                                                                                                  (2) 

with  together with initial condition  

                                                                                                                                      (3) 

and the boundary condition that follows  

                                                                                                                         (4) 

Condition in Eq. 4 is also known as Dirichlet boundary condition Eqs. 3 and 4. The analytical solution of Eq. 2 
with the conditions Eqs. 3 and 4 is widely discussed in many sources, for example, Eqs. 1 and 5. In real-life scenarios, 
RD can apply to higher-dimensional problems, where some modifications are required to the model to be convenient 

for the problem size. Thus, for 2-dimensional model, the RD can be represented as: 

                                                                                                                            (5) 

Noticing that  and  plus  is defined here as 

 and , and  is defined here 

as the local reaction kinetics. The diffusion coefficient  is presented as the following diagonal matrix, 

                                                                                                                                                       (6) 

Moreover, the initial condition in Eq. 3 is specified and  is steady state solution of Eq. 5 which 

means . make up for the boundary condition in Eq. 4 on both the x- and y-axes [42-45]. 

The RD system in Eq. 5 contains a family of partial differential problems IVP discussed in many references, including 
[41-48]. In support of the above, it should be noted that the analytics of this system has been reviewed and investigated 

by many references in order to determine whether the system has a solution, see [44-47]. In studying these kinds of 
equations, RD has a more prevalent numerical approach that will be more conducive to our purposes in  this paper. 

 

2.2  Discretization of RD in 2-Dimensions 

The discretization in PDE presented in a grid with two variables like  and  with two indices  and  

respectively. Assume that  and , , where  , Fig. 2. 

 
FIGURE 1. - Discretization of PDE variables in 2D 

When dealing with boundary value problems that contain a 2nd order ODE, by solving the second order ODE with 
the two boundary conditions, we get a system of N-2 linear equations for the interior points (points in orange hue in 
Fig. 1). A matrix manipulation method was utilized in order to solving linear equations type N-2 for the inner locations. 

If the initial value equation involves a 1st order ODE, then the value of  must be known. 
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A finite difference scheme is then used for   to determine  successively. We will talk 
about how the type of boundary-value problems is related to PDEs Partial Differential Equations in two dimensions, for 

more details, see [46]. 
The first derivative term in Eq. 5 is expressed as Laplace equation with boundary conditions which given as 

follows 

                                                                                                                                                       (7) 

with assumed rectangular boundary conditions 

, , ,                                                                                  (8) 

where:  is presumed so that   

The four boundary conditions in Eq. 8 will represent a square domain for Eq. 7 as shown in Fig. 2. 

 
FIGURE 2. - Domain of PDE in 2D 

 

The points on the 4 walls (boundary conditions in Eq. 8) are known, while the interior points in the square are not. 
The task is to determine the unknown points, which need an approximation scheme for this problem. For a grid of 

, we consider the order-two central-difference scheme to approximate the second partial derivative in the RD 

system (or Laplace), which leads to having the following two equations, see [49]. 

                                                                                                              (9) 

where all terms with  in Eq. 9 have the same index . 

                                                                                                            (10) 

where all terms with  in Eq. 10 have the same index . 

Applying Eqns. 9 and 10 to the original Laplace Eq. 7, we get the finite central-difference equation for a grid point 

, 

                                               (11) 

when  The outcome is 

, at grid point                                                          (12) 

The partial derivatives  are calculated by Eq. 12 at grid point ( ) with discretized values of for 

( ) and its four neighbors-at tops, bottom, left, and right, for more details see [49].  
 

Scilab is an open-source alternative to MATLAB [13]. It places less emphasis on syntactic compatibility with 
MATLAB; however, it is sufficiently comparable for some authors to assert that it is simple to transfer skills between 

them [14]. 
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Scilab Image Processing toolkit or SIP, aims to perform imaging tasks like filtering, blurring, edge detection, 
thresholding, histogram manipulation, segmentation, mathematical morphology, color image processing, etc. These 

processes are important for problem-solving in a variety of real-world applications, from automobile motion planning 
to autonomous medical picture diagnosis  [15]. 

SIP offers the following advantageous features: First: Input/Output of image files in a variety of formats, such as 

BMP, JPEG, GIF, PNG, TIFF, XPM, and PCX. Second: a multitude of features with an adaptable interface and error 
handling. Third: Function documentation with examples  [16-27]. 

 

2.3  Conjugate Gradient Method for Solving RD 

Hestenes and Stefiel pioneered the Conjugate Gradient technique in 1952. They published a paper entitled 
"Conjugate Gradient Method for Solving Linear Equations" [50, 51], which presented this method for solving linear 

algebraic equations. 

                                                                                                                                                                   (13) 

In the above system,  is real-positive and symmetric definite matrix of size , the vector of 

unknowns is , and the right-hand side  is already 

given. In the case of dense matrices, conjugate gradient requires  arithmetic operations, while, standard 

Gaussian elimination method requires only  operations as  , see [52]. When dealing with sparse 
systems that are too large to handle directly or through other direct procedures, the conjugate gradient is often used as 
an iterative strategy. Large sparse systems are often a side effect of solving partial differential equations or optimization 

problems computationally [53].  

Two non-zero vectors  and  are conjugates (in terms of the symmetric positive-definite matrix ) if and only 

if they are. 

                                                                                                                                                        (14) 

Eq. 14 defines an inner product on the left-hand side. 

                                                               (15) 

In other words, if and  are orthogonal on each other with regard to the inner product in Eq. 15, then they are 

conjugate. To be conjugate is indeed a symmetric relationship, which means that if  and  are conjugate, then  is 

conjugate to . Assume that the set  

                                                                                                                                             (16) 

To contain all mutual conjugate vectors of rank m concerning matrix . Hence, for all  if  , 

then  is a base for , and the solution  of Eq. 13 is expressed as 

 
 

Thus, for solving , conjugate gradient determines the series of  conjugate directions and then computes 

the parameters  [54]. 

To discuss the algorithm of Conjugate-Gradient, suppose  is the result of Eq. 13, at step , and we call it a 
residual function, as follows 

                                                                                                                                                       (17) 

Then for any two residuals   and   are orthogonal if , ; also recall the orthogonal vectors 

 and  i.e.  . However, each of  and  forms a distinct orthogonal base concerning the standard 

inner product.  Thus, a solution  can be thought of as a projection of x, thus a solution to Eq. 13 can be written, but at 

first, an input vector  should be considered [52]. As a result, an iterative algorithm can be expressed as follows  

Algorithm 1: Conjugate Gradient Method for Solving RD System 
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Step 1:  set an initial residual   

Step 2: if  is small enough, then  is the solution 

Step 3: set   

Step 4: set  

Step 5: loop   

Step 6:   

Step 7:  

Step 8:  

Step 9: if    small enough, then exit the loop 

Step 10:   

Step 11:  

Step 12:  

Step 13: end loop 

Step 14: then  is the resulted solution 
For more clarity see Fig. 4, 

 

FIGURE 3. - The solution  in the base  so that  

 

3. Results and Discussion 

3.1  Numerical Treatment of Linear Elliptic Reaction-Diffusion System 

The 2-D linear elliptic equation is a common RD system type, an expression of the boundary value problem. Based 

on Eq. 5, this type can be expressed in the following form 

 with                                                                                       (18) 

This equation is shown in the domain , where . To start finding the solution, 

one needs to consider a boundary condition , see [41].  We will find the numerical solution of problem Eq. 18 by 
using the conjugate gradient method. A source code in Fortran 90 is built-up for this problem and the solution obtained 

based on two algorithms: Algorithm 1 mentioned before and the following Algorithm 2,      
Algorithm 2: Linear Solver 

Step 1:  
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Step 2: for  

Step 3: for  

Step 4:  

Step 5: end  
Step 6: end  

Step 7: for k= 1, m  

Step 8: set  

Step 9: set  

Step 10: +   
Step 11: end 

We notify that , containing  as rectangular domain and boundary 

condition . We continue to find the solution for problem  (problem of linear elliptic solver) by using 

Algorithm 1 to get the final result. After implementing Algorithm 2 above, we ran some tests to show the accuracy and 
the efficiency of the method we solved, and it is in Table 1.  

 
Table 1. - Test problem for Linear Solver algorithm 2 

 

Test Iter Grid-Size (m) Time (sec) 

1 65 32 0.180 

2 122 64 0.800 

3 236 128 0.442 

4 473 265 0.297 

 
A sample of the results of Test 2 in Table 1 is shown in Table 2, where the number of iterations is in the first 

column, the solution  is in the second column, the residual is in the third column, the maximum value of the solution 

 is in the fourth column, and the minimum value of  is in the fifth column. Note the grid size ( ). 
 

Table 2. - Sample of solutions for problem : Algorithm 2 and Algorithm 1 in Gfortran, with  
 

Nit X Resd Max-Val Min-Val 

1 0.1998793E-02 0.1931965E-02 0.9740633E+00 0.0000000E+00 

2 0.1428013E-02 0.1351284E-02 0.9444863E+00 0.0000000E+00 

3 0.1267772E-02 0.8697530E-02 0.1096118E+01 0.0000000E+00 

4 0.9547615E-03 0.7609555E-03 0.9715253E+00 0.0000000E+00 

5 0.8540408E-03 0.6897023E-03 0.9492763E+00 0.0000000E+00 

6 0.6951369E-03 0.5835200E-03 0.9624640E+00 0.0000000E+00 

7 0.6222733E-03 0.5559316E-03 0.1005777E+01 0.0000000E+00 

8 0.5274140E-03 0.4720334E-03 0.9542296E+00 0.0000000E+00 

 

To visualize the solution, a variety of grid sizes ( ) were applied, and Gnuplot was used to plot the results; for the 
resulting data, we ran the command to generate the final plots, which are represented in Figs. 4, 5, 6, and 7. 
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FIGURE 4. - The solution to  with a grid size of  
 

 

FIGURE 5. - The solution to  with a grid size of  

 

FIGURE 6. - The solution to  with a grid size of  

 

FIGURE 7. - The solution to  with a grid size of  
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4. Conclusions 

A numerical solution for the problem of 2-dimensional Reaction-Diffusion, which has many applications in 
physics and chemistry have been provided in this work. The work addresses a stationary linear elliptic problem in a 
rectangular domain, with boundary conditions determined by the Finite-Difference formula. However, two FORTRAN 

codes were developed to implement the numerical solution, linear solver and Conjugate-Gradient method. The findings 
are summarized in the following:   

1. The grid size for the symmetric matrix  depends on the bijective function 

 to switch the index of the entries  to grid point ; the solution for this 
problem is concave-up since it is an elliptic problem. 

2. Many solvers can be implemented for symmetric matrices like the conjugate gradient, Gauss -Seidel technique, 
and Jacobi techniques. Each of them gives the right solution, but we choose conjugate gradient because it provides high 

accuracy. And also, the efficiency of the used computer affects the answer. 
3. The size of the grid in the problem affects proportionally with the solution; since as long as we refine the 
problem's grid size, the iteration count is raised, while the implementing time is decreased, which is probably because 

of the linearity of the function . 

4. The convergent test for this problem is , where , this convergent assures 

good accuracy for the solution, check Figs. 4, 5, 6, and 7. 
5. In future work, we will tackle a semi-linear elliptic boundary-value problem using the same method as in this 
study. 
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