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1. INTRODUCTION 

Changing in the natural and the scientific phenomenon need solutions, the field of fractional calculus gives these 
problems, the best solutions, so the work in this field become better than integer calculus . One can see the fact, now 

almost, researchers write in this field and they solve many different problems in many sciences using different methods. 
In [1] Kudryashov technique is utilized for the resolution of nonlinear space-time fractional partial differential 
equations. The linear fractional partial differential equations were solved using the local fractional Sum udu 

decomposition technique in [2-3]. The authors use an approximation technique to solve differential equations including 
fractional order delay in [4]. The use of the Decomposition Method and its implications in the resolution of Linear and 
Nonlinear Schrödinger Equations is explored in [5]. The Delay-Decomposing Approaches to Absolute Stability Criteria 

for Neutral-Type Lur'e Systems were examined in [6]. The optimum homotopy asymptotic approach is used in [7] to 
solve first-order nonlinear fuzzy differential equations. The objective of this study is to provide an approximate solution 

for a first-order nonlinear fuzzy initial value problem that involves two distinct fuzzy functions  [8]. By using the 
Decomposition transform technique, Fractional Differential Equations are solved in [9]. The solution to the system of 
Volterra-Fredholm Integro-Differential Equations is obtained using numerical methods in [10]. Moreover one can see 

the fractional field almost, in all sciences because it gives the right Explanation for the scientific phenomenon. The 
main work in this paper is generalizing of decomposition method and showing the powerful and utilizing to solve 
fractional order partial differential equations, solving some of them here that can write the general form of orders 

bounded by two by the following: 
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                                                                                   (1) 

where ; a, b and  are constants,  is a given 
function, subject to initial and boundary conditions as  

Initial conditions (I.C 1)  and (I.C 2)                                                        (2) 

                     (B.C 1)  and (B.C 2)                                                                (3) 

If (ω(x,τ)=0), the equation will be a linear homogeneous Space-Time fractional partial differential equation. 
Conversely, if (a = c = 0), the equation will result in the Space-Time Like-heat equations. In the scenario when b = c = 

0, the resulting equation may be expressed as the Space-Time Like-Wave equations. 
The aim of this study is to generalize integer-order differential equations into fractional order and extend the 

decomposing method to the fractional case. This is achieved by utilizing fractional calculus theorems and properties to 

solve fractional time and space partial differential equations. The study demonstrates the method's ability and 
applicability to various problems by applying it to different cases and presenting the results using Matlab programs. 

 

2. Definitions and Theorems [11- 21]  

Some definitions given as a base in this work      

2.1  Riemann integration (RFI) of order  [22-25] 

The formula for fractional order integration, as shown below in modern notation, was derived by Riemann via the 

use of an extension of the Taylor series 

                                                                             (4) 

Riemann introduced an arbitrary (complementary) function ψ(s) because he did not fix the lower bound of 
integration c, a disadvantage that cannot be removed in the framework of his approach. 

2.2  Riemann-Liouvill Fractional Derivative (RFD) of order  given as: 

                                                                                                                  (5) 

       where                                    

2.3  Caputo Fractional Derivative (CFD) of order (𝜸), or ,where  

            (6) 
2.4 Properties (Riemann and Caputo) Fractional Derivatives and Riemann Integral   

i- (𝛾 and 𝜐) 𝜖 ℝ; 0 ≤ (𝛾 and 𝜐) then                                                                                 (7)                   

ii- For 0 ≤ 𝛾;    −1 < σ    then                                                                                   (8) 

From definitions and Properties if    𝛾 → (𝑛 − 1)   then 

iii-                                                (9) 

iv-                  ;                                                              (10) 

Note 1:  Is Caputo's fractional derivative superior to other formulae for the fractional differential equation (FDE)?  

The rationale for the use of the Caputo definition is in the need to delineate supplementary criteria in order to provide a 
distinct solution. The supplementary conditions mentioned are only conventional conditions, similar to those found in 
classical differential equations, and so are easily recognizable to humans. In contrast, the Riemann-Liouville fractional 

derivative definition includes specific fractional derivatives (and/or integrals) of the unknown solution at the beginning 
point x = 0, which are functions of x. The beginning circumstances lack physical characteristics, and the method for 

measuring these quantities in tests is unclear, making it difficult to allocate them accurately in an analysis [26-30]. 
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Note 2: In this note, some of the fractional derivatives can be written by using the linearity and properties of 
fractional derivatives with the help of expansion series of the power for some functions as the following: let, we can 

write a function f(x) by expansion form as: 

  where ak are constants, then fractional derivatives can be written as:         

                                                                                                                        (11)     

If    then     where a 𝜖 ℝ                                                                                            (12) 

If     or  , then                                                           (13) 

If    or  , then                                      (14) 

3. Decomposing method  

The proposed approach involves directly addressing the equations and advancing them without using linearization, 

perturbation, or other constraining assumptions that might potentially alter the physical characteristics of the model 
being examined. Furthermore, the approach involves the decomposition of the unidentified function into an unlimited 
number of components, which are specified by creating a series. The determination of these components is an iterative 

process. 
 

3.1  Algorithm of decomposition method  

In this section, the general steps will be given as an algorithm to help us solve fractional differential equations; 
Consider the boundary fractional order Like-Wave equation in the form: 

 ; where  .                                                               (15) 

where  is given function, subject to the boundary and initial conditions respectively: 

(I.C 1)  and (I.C 2)                                                                                   (16) 

(B.C 1)  and (B.C 2)  

First, Rewrite equation (9) using operator forms as,                                    (17) 

Second, Choose for what variable which is solving for it (let it ), 

Third, take   an inverse operator of  for both sides of the equation in (second),  

So that equation will be   ,                                                            (18) 
Using properties in (3, iv), 

 ,                                     (19) 

Fourth, rewrite this solution  by decomposition infinite series as, 

                                                                                 (20) 

then,                          (21) 

Fifth, rewrite the equation in (fourth) as recursive equations: 

                                                            (22) 

Now one can calculate ( approximation solution by using Eq. (11), where the exact solution will be limited to 
approximation when k goes to infinite. 
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4. Numerical Examples  

Multiple examples will be resolved to demonstrate the efficacy of this approach. 

 Example 1  
Solve the space-time fraction partial differential like-telegraph equation, respect to initial conditions in the following: 

,                                                                                                             (23) 

   Subject to conditions   ;   ?                                                             (24) 

Solution  
Using the algorithm above, and the given conditions, one can calculate zero approximation solution as: 

  , where n=2,                                   (25) 

Take the inverse operator (  and using an algorithm to calculate (  approximation solution as: 

 ,                                                                        (26) 

Now, let , and using properties of fractional integrals and derivatives, 

                                                      (27) 

                                                                                            (28) 

                                                                                       (29) 

  

So that, one can find the ( approximation solution as: 

 ;                                                                                           (30) 

Also limit of this approximation solution gives the exact solution when k goes to infinite as: 

 If  and , then limit of infinite sum    

gives exact solution of the integer order telegraph equation as: 

 .                                                                                                      (31) 

       Figure 1 shows the curves of exact solution, where,   ,at  and , and the 

approximation solution where, (  and ). 
 

 

 

 

 

 

FIGURE 1. - O ne can see (left-side) graph of exact solution which is given by function ( ) is closed with the (right-

side) graph of Kth approximation solution which is given by , where (  and ) 
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Figure 1 displays two graphs side by side. 
On the left side, the graph represents the exact solution, given by the function e2xe−τ. This function is plotted 

against the variables x and τ. The shape of this graph provides insight into the behavior of the exact solution over the 
specified range of x and τ. 

On the right side, the graph illustrates the Kth approximation solution, denoted as ϕk(x, τ), where k=7, ν=σ=2, and 

α=1. This approximation solution is also plotted against the variables x and τ. The shape and characteristics of this 
graph depict how well the approximation captures the behavior of the exact solution. 

By juxtaposing the exact solution with the Kth approximation solution, the figure provides a visual comparison, 
allowing for an assessment of the accuracy of the approximation method in replicating the behavior of the system. This 
comparison helps to evaluate the effectiveness of the approximation technique in representing the exact solution under 

the given conditions. 

Figure 2 shows the curves of exact solution, where, , at  and ,and 

approximation solutions at 7 terms only, where (  and . 

 

FIGURE 2. -  O ne can see what happen in the (left-side) graph of approximation solution when we change the derivative 

(  ) from ( ), but in general the approximation solution will  be closed with exact when all derivatives go 

from fractional order to integer 

Figure 2 depicts the curves of the exact solution, represented by ϕ(x,τ), and the approximation solutions using only 
7 terms. 

Specifically, the left side of the graph displays the curves of the exact solution ϕ(x, τ) at ν=σ=2 and α=1. This 
curve represents the behavior of the exact solution over the specified range of x and τ. 

On the right side of the graph, the curves represent the approximation solutions using only 7 terms, where k=7, 
ν=1.5, σ=2, and α=1. These curves illustrate how well the approximation method captures the behavior of the exact 
solution with a limited number of terms. 

By juxtaposing the curves of the exact solution with those of the approximation solutions, the figure facilitates a 
visual comparison. This comparison enables an assessment of the accuracy and effectiveness of the approximation 
technique in replicating the behavior of the exact solution under the specified conditions. 

 
Example 2  

Solve like-wave fractional order partial differential equations, 

     where,                                                                (32) 

Concerning conditions as:                                                 (33) 
Solution  

Using initial conditions to find zero approximation solution as: 

;                                                                                         (34) 

Also the (kth) approximation given:   

 k= 0, 1, 2, 3, … etc.;                                                                                             (35) 

one can use that to find: ,                                       (36) 
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,                                                                                                     (37) 

by the same way, one can find: 

, so on                                                                                      (38) 

 

                                                                                                (39) 

This formula gives the approximation solutions for k , also one can find the exact solution when k goes to 

infinity as: 

                                                                                   (40) 
where this means: 

  , then at (  )                                          (41) 
solution will  

                    (42) 
This solution closed with the exact solution of the wave partial differential equation of integer order. 

Figure 3 presents the curves of exact solution (ϕ(x,τ)=cos(x) [cos(τ)+sin(τ)]), and the approxim- ation      

solutions  , where x =(0:0.1:1), with fixed , also 

taken                                                                                                                 (43) 

 
FIGURE 3. - O ne can see the four curves (*, +, o, and *) of approximation solutions, go to close with exact solution curve 

(_____ ) when the derivatives go from fractional order to integer order at the Kth solution 

 
Figure 3 displays the comparison between the exact solution and the approximation solutions for Example 2. 

The exact solution, represented by the curve labeled "_____", is given by ϕ(x,τ)=cos(x)[cos(τ)+sin(τ)]. This 
function is plotted against the variables x and τ. 

The approximation solutions, represented by the curves labeled "", "+", "o", and "*", are computed using the 

formula Eq. 34. These curves are plotted for x values ranging from 0 to 1 with increments of 0.1, and with a fixed τ 
value of 0.4. Additionally, the approximation solutions are evaluated at different values of ν and σ. 

By comparing the curves of the exact solution with those of the approximation solutions, the figure illustrates how 
closely the approximation solutions approach the behavior of the exact solution. As the derivatives transition from 
fractional order to integer order, the approximation solutions converge towards the exact solution. This convergence is 

visually depicted by the approximation solution curves moving closer to the exact solution curve as the fractional 
orders approach integer values. The figure demonstrates the effectiveness of the approximation method in capturing the 
dynamics of the system, particularly as the fractional orders approach integer values. 
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Figure 4: presents the curve of the exact solution and the approximate solution, where .  

 
FIGURE 4. - This drawing shows us how the drawing of the approximate solution on the r ight side is close to the same 

shape as the real solution, and that the difference is due to the difference in the partial derivatives in each of 

(  ) 

 
Figure 4 illustrates the comparison between the exact solution and the approximate solution for a specific scenario 

characterized by k=10 and ν=σ=1.8. 
On the left side of the graph, the curve represents the exact solution of the problem. This solution, likely plotted 

against variables such as x and τ, accurately describes the behavior of the system according to the given fractional 

partial differential equation. 
On the right side of the graph, the curve depicts the approximate solution derived using the approximation method. 

This solution is also plotted against the same variables as the exact solution. 
The accompanying explanation suggests that the approximate solution closely resembles the shape of the exact 

solution. However, there are slight differences between the two curves, attributed to variations in the partial derivatives 

involved in computing the solutions. Specifically, these differences arise from the use of fractional orders (ν=σ=1.8) in 
the approximation, in contrast to the integer orders in the exact solution. The figure demonstrates the effectiveness of 
the approximation method in capturing the behavior of the system. The close similarity between the approximate and 

exact solutions indicates that the approximation method yields results that closely resemble the true dynamics of the 
system, albeit with slight differences due to the use of fractional orders. 

 
Example 3  
Solve the general fractional space-time Like-heat homogeneous partial differential 

equation, , subject to condition,  

 ?                                                                                                                                              (44) 
Solution  

By using the given condition and the algorithm of this method, one can find the zero solution 

as: , then approximation solution given as: 

, where k = 0, 1, 2,…,                                                                                            (45) 

now use these equations to find: 

,                                                      (46) 

                              (47) 

 

So,  solution will be:                                     (48) 
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Also, the exact solution will be a limit of the  solution, when k goes to infinite, 

  ,                                                  (49) 

 ,                                                                               (50) 

Then this closed with the solution of the same equation in integer derivatives ( . 

Figure 5 shows the exact solution and the estimated solutions for various values of (  with k=10 terms, one 

can see how the figure of approximation moves to close with the exact curve when the values of fractional derivative 
closed with integer values. 

 
FIGURE 5. - Here the left drawing shows us how the approximate solution curve approaches the exact, when the value 

of the fractional order derivative (σ) increases to integer derivative, with fixed (ν=2), also, the right-side drawing shows us 

how the approximate solution approaches the exact, when the fractional derivative (ν) go to integer derivative (ν=2), with 
fixed (σ=1). Both of them show us the approximate solution curve conforms to the exact one when the fractional derivatives 

reach the integer derivatives (σ=1, ν=2) 

 

Figure 5 illustrates the comparison between the exact solution and the estimated solutions for Example 3, 
considering various values of σ and ν with k=10 terms. 

The left drawing in Figure 5 demonstrates how the approximate solution curve approaches the exact solution curve 

as the value of the fractional order derivative (σ) increases towards an integer derivative, with a fixed ν=2. This 
behavior is depicted by plotting the approximate solutions for different values of σσ against the exact solution. As σ 

approaches 1 (an integer value), the approximate solution curve gradually becomes closer to the exact solution curve. 
Similarly, the right-side drawing in Figure 5 illustrates how the approximate solution curve approaches the exact 

solution curve as the fractional derivative (ν) approaches an integer derivative (ν=2), with a fixed σ=1. Again, the 

behavior is depicted by plotting the approximate solutions for different values of ν against the exact solution. As ν 
approaches 2 (an integer value), the approximate solution curve becomes more similar to the exact solution curve. 

Overall, both drawings in Figure 5 highlight how the approximate solution curve converges towards the exact 

solution curve as the fractional derivatives (σ and ν) approach integer values. This convergence ind icates the 
effectiveness of the approximation method, particularly in capturing the behavior of the system accurately when the 

fractional derivatives closely resemble integer derivatives. 

Table 1 demonstrates the juxtaposition of exact and approximate solutions across many values of  and 
(x=0:0.1:1), fixed τ = 0.5. One can see the errors between exact and approximation solutions, these errors become small 

when fractional derivatives equal integers. 
 

 
Table 1. – The exact and approximate solutions for example 3 

τ x 
    

Fixed τ=0.5 

0.000 0.000 0.000 0.0341 0.000 

0.1000 0.0950 0.0950 0.1303 0.0875 

0.2000 0.1890 0.1890 0.2251 0.1741 

0.3000 0.2811 0.2811 0.3177 0.2589 

0.4000 0.3704 0.3704 0.4071 0.3412 

0.5000 0.4560 0.4560 0.4924 0.4201 

0.6000 0.5371 0.5371 0.5728 0.4947 
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0.7000 0.6128 0.6128 0.6475 0.5644 

0.8000 0.6824 0.6824 0.7158 0.6285 

0.9000 0.7451 0.7451 0.7769 0.6863 

1.000 0.8004 0.8004 0.8302 0.7373 

 
 
From Table 1 the exact and approximate solutions for example 3, with a fixed value of τ = 0.5 and varying values 

of x in the range from 0 to 1 with increments of 0.1 has been presented. 
In the table, the first column represents the values of x, while the subsequent columns display the exact solution, the 
approximate solution, and the errors between them. The errors are computed as the absolute difference between the 

exact and approximate solutions. 
The table demonstrates how the errors between the exact and approximate solutions change as the fractional 

derivatives approach integer values. Specifically, it notes that the errors become smaller when the fractional derivatives 
approach integers. This observation suggests that the accuracy of the approximate solutions improves as the fractional 
derivatives become closer to integer values. 

The table provides a quantitative comparison between the exact and approximate solutions, highlighting the 
efficacy of the approximation method in capturing the behavior of the system, particularly as the fractional derivatives 
converge towards integer values. 

 
Example 4  

Solve the following linear inhomogeneous fractional order space-time partial differential equation: 

,                                                                          (51) 
Subject to boundary and initial condition respectively 

B.C   I.C ,                            (52) 

also the given function is:                                                           (53) 

 

Solution  

This equation has been solved for  unknown variable   

, and  , for ,                                 (54) 

Then                                                           (55) 

,                                                                     (56) 

,                                                                                                  (57) 

]                                    (58) 

One of the powerful features of this method appears in this example: when we solving inhomogeneous fractional 

order partial differential equations, we obtain two similar terms that are equal in two successive steps but with different 
signs. Therefore, when collecting the terms to obtain the final solution, these terms will disappear and we obtain the 
true solution. This confirms the observation that in such cases, if the term (noise term) appears, the K th solution will 

equal the real solution. 
 

5. Conclusion 

The conclusion highlights the effectiveness of the numerical approach in solving differential equations with 
fractional orders, particularly in facilitating the solution process. It emphasizes that in certain cases, such as the last 

example in the paper, the method enables the discovery of the true solution after only a few steps. The phenomenon 
where intermediate terms disappear during addition operations confirms the attainment of exact solutions. Additionally, 
the conclusion underscores the agreement between approximate solutions and real solutions, especially when the 

fractional derivatives approach the correct values. 
This study contributes to the advancement of the field by showcasing the efficacy of numerical methods in 

handling fractional differential equations. It provides a clear scientific justification for the work by demonstrating its 

ability to yield accurate solutions efficiently. Furthermore, the potential applications of this method in various fields 
where fractional differential equations arise can be significant. Extensions of this work could involve exploring more 

complex differential equations or applying the method to practical problems in physics, engineering, or other scientific 
disciplines. 
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