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1. INTRODUCTION 

The long-term autoimmune condition rheumatoid arthritis (RA) impacts many joints, it is typified by equilateral, 
joints inflammation resulting in bone loss, damage to cartilage and impairment (1). Although a small number of joints 

are impacted at first, numerous joints are eventually afflicted, and extraarticular symptoms are frequently experienced 
(2). Involvement of exocrine lacrimal and salivary gland may show up as extra-articular symptoms of the current 
illness. Reduced salivary flow and chemical alterations are signs of impaired salivary function in rheumatoid arthritis, 

which is thought to be directly linked to lymphocyte infiltration in afflicted glands (3,4). About 0.4% to 1.3% of the 
people affected by this disease based on factors like age (Compared to men, women are affected by RA two to three 

times more frequently, and first-time diagnoses for the disease peak in the sixth decade of person life) (5). Clinically, 
there are notable differences between the symptoms of RA in its early stages and those in its later stages when the 
illness is not adequately managed. RA in early-stage is distinguished by a widespread sickness with symptoms like 

swollen, morning stiffness and aching joints, it is also related with increased levels of (CRP) C-reactive protein and an 
increased (ESR) rate of erythrocyte sedimentation (6). 

Anticitrullineated peptide antibodies (ACPAs), which are present in high serum concentrations, are indicative of 

rheumatoid arthritis (RA), albeit some individuals do not test positive for the illness. The pathophysiology of RA is not 
well known (7, 8). When it comes to the pathophysiology of RA, the main pro-inflammatory cytokines that promote 

osteoarthritis damage and an inflammatory response are interleukin-6 (IL-6), interleukin-1(IL-1), interleukin-18 (IL-
18), and tumor necrosis factor (TNF) (9).  A kind of planned cell death named pyroptosis was first recognized in 2000 
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(10) and is defined through the creation of pores in the plasma membrane, swelling, cell rupture, and the liberation of 
cytosolic components such high mobility group box 1 (HMGB1), IL-1ß, and IL-18. It is a form of death via necrosis 

that has become a significant part of the innate defense mechanism (11,12). Since then, pyroptosis research has 
expanded into entirely new areas. The nomenclature committee on cell death (NCCD) suggested in 2018 that the term 
"pyroptosis" be changed to refer to a controlled cell death that is frequently caused by inflammatory caspase activation 

and requires the GSDM protein family to create plasma membrane holes. (13). The aim of this review is to investigate 
the role of pyroptosis in rheumatoid arthritis, as this process is associated with the breakdown of the plasma membrane, 

which results in the release of several mediators, and an overabundance of these mediators is associated with 
rheumatoid arthritis. Additionally, pyroptosis may be a novel target in the management of rheumatoid arthritis. 

 

2.   MATERIAL AND METHOD 

       In order to perform this study, relevant publications were searched for using keywords such as "Rheumatoid 
arthritis, inflammasomes, pyroptosis, Gasdermin D, Caspase 1" in the academic databases, Web of Science, PubMed, 

Scopus and Google Scholar." 
 

3.   RHEUMATOID ARTHRITIS: THE INFLAMMATORY RESPONSE 

Rheumatoid arthritis is a common autoimmune illness that is typified by continuous joint inflammation and 
destruction caused by neutrophils, T and B lymphocytes, monocytes, and proliferating fibroblasts of synovial tissue 
(14). Furthermore, inflammation causes the synovium to swell, resulting in the pannus formation, which is abnormal 

tissue that attacks and destroys neighboring joints tissues. upregulation of cytokines that promote inflammation, 
chemokines, and matrix metalloproteinases by RA pannus cells causes cartilage and bone to gradually deteriorate (15).  

       Early in RA, innate immunity in the synovium being activated by Fc receptor interaction or Toll-like receptor 
agonists is a major pathogenic mechanism that triggers inflammation. Because the innate defense mechanism includes 
monocytes, dendritic cells, macrophages, and phagocytes, which are cells present antigen and produce cytokine (DCs) 

play a crucial role in innate immunity and contribute significantly to the onset and progression o f disease. (16). Lymph 
nodes, which include inflammatory synovial tissue and can influence primed T cells to adopt the TH1 phenotype via 
chemokine receptors such as CCR5, are a potential target for dendritic cells in synovium activated by TLR ligands (17). 

 

3.1  INFLAMMASOMES 

      An innate immune response, inflammation is mostly brought on by myeloid immune cells, Pattern recognition 
receptors (PRRs) and macrophages, are the first to notice it. Finding molecular patterns associated with pathogens 

(PAMPs) or dangers (DAMPs) caused by internal stress or infection (18). PRRs are made up of receptors on the 

membrane of the cell, like Toll-like receptors (TLRs), and the cytoplasm receptors, including inflammasomes and 
nucleotide-bindi ng domain-like receptors (NLRs) in particular (19). 

      Procaspase-1, an adaptor, and a receptor protein form the protein complex known as an inflammasomes. These are 
the so-called "canonical" inflammasomes; they have NLRs and are lacking in the receptor protein apoptosis -associated 
speck-like protein (AIM2), which has an adapter protein called the caspase-recruitment domain (ASC) as in figure 1. 

Several triggers, including DAMPs from host injury and PAMPs from infection, can cause formation of 
inflammasomes (activation of inflammasome showed in figure 1), which ultimately can cause the development of 
cytokines that enhance host immunity, like interleukin (IL)-1β and IL-18(20). One important source of IL-1 and IL-18 

is the NLRP3 inflammasome, and mounting data indicates that the inflammasome may be engaged in the process that 
causes rheumatic diseases (21). Upon cleavage, cytokines that are not active like pro-IL-1β and pro-IL-18 yield the 

active cytokines, IL-1β and IL-18, in that order (22).    Peripheral blood leukocytes are the primary source of expression 
for the NLRP3 inflammasome. As a reaction to inflammatory triggers, An NLRP3 inflammatory complex quickly 
forms in conjunction with pro-caspase-1 and ASC. When the NLRP3 inflammatory complex forms, caspase-1 is 

activated, which lead to the maturation of IL-1β and IL-18, two cytokines that promote inflammation (23).  
 
 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650081/#B43
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FIGURE 1. - Activation of inflammasomes (Jiang et al., 2022) 

3.2  CASPASE- 1 

A family of proteolytic enzymes named caspases triggers and relays signals that ultimately cause death of cell. 

They can be separated pyroptosis-mediated caspases that cause inflammation (caspase-1, 4, 5, and 11) and apoptotic 
caspases (caspase-8, 9, 10, 3, 6, and 7) that induce apoptosis (24). Inflammation is brought on by caspase-1, also named 

interleukin-1b converting enzyme (ICE), which interferes with preinterleukin maturation. The sequences of caspase-1 
and other inflammatory caspases, like caspase-4, 5 and 11, have the closest sequence identity (25). GSDMD can be 
used as a direct substrate to cause pyroptosis in both the caspase-1 intervening canonical route, and the caspase-4/11 or 

caspase-5 intervening noncanonical route (26).  
      The well-known inflammatory mediated caspase, the development of cytokines that are pro inflammatory  (proIL-1β 
and IL-18) into IL-1β and IL-18 depends on caspase-1 (27). In order to overcome the stimulatory materials, caspases 

that are participated in inflammation and death are known as inflammatory mediated caspases (28). Inflammasome 
assembly, which is triggered by a number of molecules that are small, resulting from tissue injury, infections, or 

metabolic dysfunctions, activates pro-caspase-1 (29). As a result, macrophages, dendritic cells, and epithelial cells 
frequently exhibit caspase-1 activation as an immunological defense mechanism (30).  
 

3.2.1 THE ROLE OF CASPASE- 1 IN PYROPTOSIS 

        A type of planned necrosis that is different from apoptosis is called pyroptosis. Numerous cell types in the body 
undergo pyroptosis, which is caused to release inflammatory cytokines that remove pathogen-infected cells and 

encourage monocyte reassembly at the site of injury (24). Cytoplasmic content flows out of the cells  as the 
cytoplasmic membrane ruptures, causing pyroptotic cells to swell and have numerous vesicular protrusions. It differs 

from apoptosis, which lead to apoptotic bodies formation also the cytoplasmic membrane preservation (31). An 
important aspect of pyroptosis for a long period has been reliance on caspase-1 (32). The role of GSDMD; the 
primary substrate and principal executor of pyroptosis. After that, activated caspase 1 cleaves GsdmD to release its N-

terminus, which creates the transmembrane pore and acts as the pyroptosis executor as in figure 2(33). In recent 
times, the role of additional inflammatory caspases has been discovered, offering valuable understand ing into the 
process of pyroptosis ( 34, 35).  

https://www.frontiersin.org/articles/10.3389/fphar.2021.631256/full#B72
https://www.frontiersin.org/articles/10.3389/fphar.2021.631256/full#B78
https://www.frontiersin.org/articles/10.3389/fphar.2021.631256/full#B67
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FIGURE 2. - The role  of caspase 1 in pyroptosis (Burdette et al., 2020)  

4.   GASDERMIN D (GSDMD) 

The pore-forming protein family known as gasdermins is becoming one of the most important controller of 

autoinflammation, infection and anticancer immunity. Their involvement in causing pyroptosis, a pro -inflammatory, 
lytic kind of cell death, are crucial, as several recent investigations have demonstrated. Furthermore, Gasdermins are 
quite important in NETosis, secondary necrosis, and apoptosis (36)  

Human GSDMD is present in the cytoplasm as an inactive pro-protein while the body is at rest. The two domains 
that make up GSDMD are the NT-GSDMD and the C-terminal domain (CT-GSDMD), which are joined by a flexible 

interdomain linker. When CT-GSDMD binds to NT-GSDMD, the protein remains auto-inhibited and unable to create 
membrane holes. The human GSDMD linker domain's Asp275 proteolytic cleavage site is where pore-forming activity 
is obtained. The primary cause of proteolytic activation of GSDMD is a class of proteases called inflammatory 

caspases, which in humans includes caspase-1, caspase-4, and caspase-5(37). 
Following proteolytic activation, NT-GSDMD reveals many regions of basic amino acids that function as binding 

sites for acidic phospholipids, including cardiolipin, phosphatidylserine, phosphoinositide phosphates, and phosphatidic 

acid (38). This interaction makes it easier for NT-GSDMD to be recruited to lipid-containing cellular membranes, such 
as the plasma membrane's inner leaflet, where it oligomerizes and creates multimeric holes (39). Much research has 

been done on the biophysical processes that turn NT-GSDMD monomers into multimeric pores. 
 

4.1  ROLE OF GSDMD IN RHEUMATOID ARTHRITIS  

      GSDMD is the well-researched of gasdermin family member, is found at chromosome 8q24.2. At first, it was 
discovered that the stomach and oesophagus' epithelial cells exhibited GSDMD. According to recent research, 
GSDMD is additionally abundantly expressed in T cells, B cells, neutrophils, macrophages, and monocytes, where it 

functions a crucial job in inflammatory cell death. The N-terminal domain and the C-terminal repressor domain of 
GSDMD are joined by a linker region that contains a variety of location of cleavage for various caspases or 
granzymes (40, 41).  

       It was unknown how GSDMs cause cell death up till 2015, when two investigations defined GSDMD as the agent 

responsible for the lysis of cells process (pyroptosis). Initially, it was demonstrated that upon LPS transfection, cells 
lacking GSDMD had decreased lysis of cells and liberate of IL-1β. While caspase-11 cannot break pro-IL-1β, it is 

necessary for pyroptosis and release of IL-1β following different pyroptotic triggers. Additionally, the same site where 
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caspase-11 cleaves GSDMD can also be used by caspases-1/4/5. Following aspartic acid in its linker region at position 
276, which causes pyroptosis, murine caspase-11 directly breaks GSDMD. This cleavage event is followed by 

processing of pro-IL-1β by caspase-1 following further NLRP3 inflammasome turning on (42). A third study that 
appeared a few months later made use of highly sensitive quantitative mass spectrometry analysis to reach the same 
conclusions (43) All things considered, these investigations demonstrated that pyroptosis requires N-terminal domain 

liberation via GSDMD processing in the linker region (GSDMDNT) from the autoinhibition of the C-terminal domain 
(GSDMDCT). Remarkably, an exosite that binds to GSDMDCT is present in caspases -1/4/11, increasing the propensity 

for binding to GSDMD (44, 45). Numerous labs throughout the world became interested in GSDMD's identification as 
A pyroptotic manager and how caspases that induce inflammation-1/4/5/11 activated it, as seen by the rise of work 
published during the years that followed. Four investigations published important discoveries in 2016 already about the 

methods by which GSDMD causes pyroptosis (46, 47). These investigations, which used a variety of techniques, 
including atomic force microscopy, fluorophore-filled liposomes, and electron microscopy, showed that GSDMDNT 
attaches to acidic phospholipids and cardiolipin following the linker region's GSDMD cleavage, creating perforations 

on liposomes. These huge, thermodynamically stable ring-shaped oligomers are called pores (48). According to a 
recent study, GSDMD pores are dynamic systems that possess open-closed conditions. that are controlled by local 

phosphoinositide metabolism rather than being constitutively open (49). GSDMD pores have the ability to release tiny 
intracellular compounds such cleaved IL-1β. Larger proteins (>50 kDa) can only be found in the supernatant following 
lysis of cell. Examples of these proteins are lactate dehydrogenase (LDH, a common label to quantify cell lysis) and 

complexes involving high mobility group protein-1 (HMGB1) (50). Not just is the cargo's molecular size a factor in 
controlling the release of chemicals via GSDMD perforations, but also the cargo's electric charge (51, 52). The revealed 
structure of GSDMD pore, which appeared that the pore conduit in liposomes is negatively charged with an inner 

diameter of 21.5 nm, and a 31–34-fold symmetry, revealed that compared to negatively charged payloads, positively 
charged and neutral cargoes are released with faster kinetics. with similar size of molecules. When pro-IL-1β is 

processed by polybasic charged patch caspase-1 is revealed, which encourages membrane targeting and release (51). 
       Recent research indicates that RA may be exacerbated by pyroptosis, a recently identified kind of controlled cell 
death. The NLRP3 inflammasome triggers caspase-1 during pyroptosis (53, 54), which in turn triggers pro-

inflammatory cytokines such IL-18 and interleukin (IL)-1β. Gasdermin D (GSDMD) can be cleaved by caspase-1 and 
other caspases, and the GSDMD-N-terminal (GSDMD-N) opens pores in the plasma membrane that allow substances 
like lactate dehydrogenase (LDH) to flow out (55,56). In a model of collagen-induced arthritis in mice, NLRP3 

knockout reduced inflammatory response and improved joint damage (57). In a mouse model of chronic arthritis, 
removing caspase-1 reduced cartilage degradation and joint inflammation (58), and T lymphocytes that live in RA 

patients' lymph nodes seem to frequently activate caspase-1 (59). Monocyte cultures were exposed to the serum of 
patients , which caused GSDMD-dependent pyroptosis that was linked with disease activity (60).  

       The effectiveness of Chinese medicine in treating RA is good. According to recent research, many Chinese 
medications can prevent and treat RA by acting through the pyroptosis pathway. Therefore, if researchers can examine 

the mechanism of Chinese medicine against RA from the standpoint of pyroptosis, it can offer some new targets for the 
clinical medication development of RA. From the standpoint of pyroptosis, research into novel RA mechanisms may 
offer a target for RA treatment and the creation of novel medications for use in clinical settings (61). 

4.2  GSDMD INDUCE PYROPTOSIS VIA INFLAMMATORY CASPASES. 

       A kind of planned cell death called as pyroptosis was first identified in 2000 (62). It is typified by the production of 
hole forms in the membrane of the plasma, enlargement, cell rupture, and the liberation of cytosolic substances like IL-

1ß, IL-18, and high mobility group box 1 (HMGB1). This kind of necrotic cell death has become a crucial innate 
immune response against intracellular infections such as Burkholderia thailandensis, Salmonella typhimurium, 
Escherichia coli, and Shigella flexneri. (63, 64). 

       Even though pyroptosis plays a crucial biological role, its activation mechanism was unknown until recently. Three 

research groups independently and concurrently showed in 2015 that inflammatory caspase-1 and caspase-11 (caspase-
4/5 in humans) break GSDM-D between pore-forming, pyroptotic-inducing region and autoinhibitory domain, in 

response to either canonical or noncanonical activation of inflammasome. GSDM-D is a novel substrate of both 
caspases. They did this by employing distinct methodologies (such as CRISPR/Cas -9 nuclease screening, ENU-forward 
mice genetic screening, and highly sensitive quantitative mass spectrometry) )figure 3a and b) (65, 66). After 

inflammasome activation, caspase-1/4/11, which are auto-processed, identify and incorpated into a hydrophobic groove 
created by Leu306, Leu310, Val367, and Leu370 of the GSDMD-C domain, eventually breaking GSDMD, according 
to recent structural insights into formation of caspase-1/4/11–GSDM-D complex (44).  It is interesting to note that 

GSDMD's N terminal domain (GSDMDNT) selectively attaches to phosphatidylinos itol phosphates (PIPs), 
phosphatidylserine (PS), phosphoinositide (PI; present in the inner leaflet of the mammalian cell membrane), and 

cardiolipin (located in the outer and inner leaflets of membranes of bacteria). This cytotoxic fragment has an molecula r 
weight approximation of 30 Kd (p30), and it is emitted following caspase-1/4/11 processing (67, 68).  

https://onlinelibrary.wiley.com/doi/full/10.1111/jcmm.17834#jcmm17834-bib-0008
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       Following GSDM-D cleavage, GSDMDNT is able to attach to these fats, oligomerise, and create ring-shaped holes 
in the membrane of the plasma, with an estimated inner diameter of 10–16 nm (67). Mulvihill et al. used to better 

understand the mechanism of GSDMDNT-mediated membrane pore creation, high resolution atomic force microscopy 
(AFM) will be used. The delay in time GSDMDNT has the ability to construct transmembrane oligomers with slit, arc 
and ring shapes which fit into membranes containing PIP, PS or PI according to AFM pictures. These transmembrane 

oligomers with arc, slit, and ring shapes have the ability to absorb more oligomers over time to produce big, stable ring-
shaped oligomers. Whole transmembrane pore systems are finally produced by the progressive reduction in membrane 

lipid on the inside of these circles-shaped formations (69).  Furthermore, they did not notice any appreciable variations 
in the height of GSDMDNT oligomers throughout the development of GSDMDNT pores, indicating that prepore-to-
pore transitions are not necessary because the process of pore-forming of GSDMDNT is began directly in lipid 

membranes (70).  Current structural analysis also shows that the GSDMDNT's a1 helix and b1–b2 loop are necessary 
for the capacity of lipid binding (71).  

      
FIGURE 3. - Inflammatory caspases cause pyroptosis that is dependent on GSDMDNT (Lipeng et al., 2020) 

5.   CONCLUSION 

       There exist many distinct kinds of cell death, comprising apoptosis and pyroptosis , which are mediated by the 

inflammasome. When these inflammasomes are released in excess, they have two main purposes: one is protective and 
the other is pathogenic. Pro-inflammatory mediators, such as IL-18, are released during the process of cell death that 

depend on caspase-1, also named as pyroptosis. Pyroptosis define as a process that contributes to the pathophysiology 
of RA and is not just confined to defensive effects. It may also be connected to the release of cytokines that induce the 
inflammation through the caspase-1-dependent route. The primary activators of caspase-1 are Nlrp3, Nlrp4, and PPRs. 

Pro-inflammatory mediators are released during activation, and this further promotes the release of additional cytokines 
and chemokines that cause inflammation in the synovial joint and ultimately lead to the progression of RA. 
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