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1. INTRODUCTION 

The multicore processor technology is the foundation of any high-performance computer system today. Multicore 

processors are used in everything from basic embedded systems to advanced server farms. Such multicore systems' 

performance depends on the interconnection network connecting these cores [1]. The need to develop parallel 

processing in computers has become essential, leading to the advent of newer interconnection networks to enable 

parallel processing. Interconnection networks, abbreviated as (Ins), may be classified as either dynamic or static [2]. 

Connections in a static network are permanent ties, but connections in a dynamic network may be built up on the 

fly according to the system’s requirements. Point-to-point connections directly link a processor and other processors in 

static networks. It is also possible to classify it further according to the connectivity pattern as either having one 

dimension (1D), two dimensions (2D), or a hypercube (HC). In contrast, according to the interconnection methods, 

dynamic networks may be divided into bus-based and switch-based categories. Two subcategories may be applied to 

bus-based networks: single buses and multiple buses. According to the nature of the interconnection network, switch-

based dynamic networks may be classified as single-stage (SS), multistage (MS), or crossbar networks [1, 3]. The 

primary categories of interconnection networks display in Fig. 1. 

Interconnection networks may also be divided into electrical and optoelectronic communication channels 

connecting processors. Examples are hypercube, mesh, ring, tree, and other electronic connectivity networks. Optical 

Chained-Cubic Tree (OCCT) and Optical Transpose Interconnection System (OTIS) are examples of optoelectronic 

interconnection networks. For OTIS, there are several architectures, including OTIS Hyper Hexa-Cell (OHHC), OTIS-

Hypercube, OTIS Mesh, and many more [4]. 
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processors. The hypercube topology has exciting features, making it an excellent option for parallel processing 

applications. This paper presents two innovative configurations of interconnection networks based on fractal 
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than a hypercube. 

 

Keywords: Interconnection network, Hypercube, Fractal, Sierpinski Triangle, Sierpinski Carpet 

https://orcid.org/my-orcid?orcid=0000-0002-8142-4029
https://orcid.org/0000-0002-0517-2042
https://orcid.org/0000-0003-3856-0663


Muslim Mohsin Khudhair et al., Al-Salam Journal for Engineering and Technology Vol. 2 No. 2(2023) p. 128-139 
 

129 

 

 

 

 
 

FIGURE 1. - Topology-based classification of interconnection networks [1] 
 

The interconnection networks compare in terms of several topological properties, the most important of which are 

[5, 6]: 

1. The diameter of a network is the length of the shortest path between a source and a destination. 

2. The degree of a node reveals how many nodes directly connect to it. 

3. The area cost of a network determines by the diameter and the degree. 

4. The average distance is the sum of the distances of all nodes from a particular node (the source) divided by the 

number of nodes. The average distance is critical in determining the overall delay in a computer network. 

5. The bisection width is the smallest number of channels that must be cut to split the network into two identical 

groups. The bisection width measures the network's communication bottleneck when random traffic is spread 

out evenly. 

6. A network is node symmetric if each switch has the same channel properties. Communication can be a 

bottleneck at asymmetric switches. 

The paper is organized as follows. This introduction is followed by section 2, which discusses the related work 

connected to this topic.  Next, section 3 describes the detail of the hypercube, which regards a basis for the proposed 

topologies. Section 4 explains the introductory presentation of fractals and their shapes that are of interest within the 

proposed research. The proposed approach of the Sierpinski Triangle Topology (STT) and Sierpinski Carpet Topology 

(SCT) is presented in section 5. Section 6 deals with performance evaluation, and section 7 includes the conclusion. 

 

2. RELATED WORK  

Parallel interconnection networks, which serve as the backbone of parallel systems, have become a foundation for 

study. Planning a new interconnection network and determining its cost-efficiency will take priority at this stage. 

Additionally, quicker connectivity is required to achieve faster computation. Several strategies use to accomplish the 

desired improvement, and each methodology has produced a new topology. The performance metrics are examined to 

demonstrate their superiority [6, 7]. 

The hypercube has emerged as a practical option among researchers due to its effective attributes, including a 

regular and symmetric architecture, a small diameter, a low node degree, and a low link complexity. These 

characteristics have contributed to the hypercube's rise to the top of the popularity rankings [8]. Over the years, many 

scholars have spent time and energy researching connectivity networks. Interconnection networks have severe 

constraints due to their topological structures, and the drawbacks include a high cost and a large diameter. The 

researcher designed hybrid interconnection networks built on two or more core network topologies to improve network 

topology [9]. Examples of hybrid interconnection networks: 

Varietal hypercube (VH) interconnection network topology for big multicomputer computers. The hypercube 

offers recursive structure, partition ability, high connectivity, and the ability to integrate other architectures like ring 

and mesh. The network has the same number of nodes and links. The varietal hypercube is two-thirds the diameter of 

the hypercube. The varietal hypercube has a shorter average distance than the hypercube. The shortest path 

communication is guaranteed by optimal routing and broadcasting techniques [10]. 

The hex-cell (HC) is a new fundamental interconnection network. Its design decreases overall cost by requiring 

fewer connections. For large networks, its large diameter compared to a hypercube is negative [11]. 

Multilayer hex-cells (MLH) consider a unique hybrid interconnection network. Their construction is built on a 

hexagonal grid (HC) [12]. (MLH) has a larger diameter than the hypercube topology. However, it is extendable and 

better than (HC). 

Chained-cubic tree (CCT) interconnection networks are built on tree and hypercube designs [4, 13]. This structure 

uses chains of hypercubes in a tree shape to take advantage of both structures. (CCT) balances the two architectures by 

keeping their strengths and limiting their drawbacks. Because of its narrow bisection breadth and lack of parallel paths, 
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the tree topology is impractical despite the tree topology's good maximum node degree and adequate diameter when 

employed with a basic routing algorithm. 

The tree-hypercube (TQ) has many hypercube properties, including self-routing and division [14]. They 

outperform hypercubes in diameter, extension, and average distance. It was also shown that the (TQ) has considerable 

division flexibility. 

Hypercube and mesh interconnection networks are combined in the hyper-mesh (HM) network [15]. The (HM) 

networks use the hypercube network and merge it with the mesh network, which has a lower fixed degree and does not 

grow in value as the size network study shows that the (HM) has the desired characteristics of its two component 

networks, significantly mitigating the HM's fundamental defects. 

 In terms of speed, the mesh-of-trees (MOT) network is seen as the best choice because it has two good qualities: a 

small diameter and a wide bisection [16]. 

 

3. HYPERCUBE 

The hypercube is one of the best significant connection networks for its topological features. These topological 

qualities include low diameter and high connectedness. An n-cube is an undirected network with 2n nodes with labels 

from 0 to 2n -1. Degree (n) is a node's number of links. One kind of building known as logarithmic architecture is the 

hypercube. This is because log2N=n links are the maximum number of connections that a message must travel across to 

arrive at its destination within an n-cube [4, 17]. The diameter hypercube, n or log2N, represents the most nodes a 

message must pass through to reach its mate. Fig. 2 illustrates several hypercube dimensions [12, 18]. 

 

 
 

FIGURE 2. - Hypercube with varying dimensions and numbers of nodes [8] 

 

The fact that hypercube networks are built using a recursive pattern is one of the many reasons why they are so 

popular. By linking nodes with comparable addresses in both subcubes, it t is feasible to construct an n-cube by first 

making two subcubes, each of which must have a degree value of (n - 1). Note that the 4-cube shown in Fig. 3 may be 

divided into two main subcubes with a degree of three. Note that to build the 4-cube out of the two 3-cubes, the degree 

of each node has to be increased [3, 6]. 
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FIGURE 3. -. A four-dimension hypercube [8] 
 

Each node's number is assigned, so there is a difference of one binary bit between it and the n nodes immediately 

adjacent to it and directly related to it. By XORing the binary address representations of nodes i and j, it is feasible to 

learn the path travelled by the transmission that began at node i and was meant for node j. If the XOR function 

produces one in a particular bit location, the message must be delivered with the appropriate connection. When used in 

preceding Fig. 3, the XOR operation yielded the value (1110) when a message was conveyed from the source (S) node 

(0101) to the destination (D) node (1011). Only dimensions 2, 3, and 4 (counting from right to left) will be used for the 

message's transmission [3, 8]. 

The evaluation of a topology of interconnection networks takes the place of numerous parameters. Table 1 covers a 

variety of different interconnection networks [15, 19]. 

 

Table 1. - Performance characteristic of static networks [8] 

Network Degree (n) Diameter (dim) Cost (No. of links) Worst delay 

CCNs N-1 1 N(N-1)/2 1 

Linear array 2 N-1 N-1 N 

Binary tree 3   )12log(2 N  N-1 log2N 

n-cube log2N log2N nN/2 log2N 

2D-mesh 4 2(n-1) 2(N-n) N  

k-ary n-cube 2n  2/kN  nxN klog2N 

 

 

4. PRINCIPLES OF FRACTALS 

Fractals are patterns and formations constructed of geometric shapes that repeat their geometry at various scales, 

from very small to extremely large. Fractals can describe structures and surfaces that cannot be modeled using ordinary 

Euclidean geometry. Fractals are used extensively in science, technology, and art [20]. 

 

4.1 SIERPINSKITRIANGLE 

The well-known Sierpinski triangle is constructed using an iterative approach. As seen in Fig. 4, for the first four 

iterations of the conventional Sierpinski triangle fractal, the basic unit of the Sierpinski triangle is the equilateral 

triangle [20, 21]. When level (m) equals zero, the triangle is centered at the origin, and (l) is used to determine the 

length of each of its sides. At the second level (m=2), the triangle is cut into four smaller triangles, each with an edge 

length of (l/2).  The three triangles located at the corners of the original triangle are maintained, while the triangle in the 

center is eliminated, as shown in Figure. In the same way, the rest of the levels are generated. The equation that may be 

used to determine the number of triangles that make up the ST at any arbitrary iteration number m is as follows [22, 

23]: 
m

mN 3
                                         (1) 

 

Likewise, the side length of each triangle may be calculated using the following formula at the m-th iteration: 

 

mm
l

l
2



                                          (2) 

 

As a result, by using Equations (1) and (2), we may deduce the following about the fractal dimension: 

 

58.1
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FIGURE 4. - The initial iteration four levels of Sierpinski triangle [20] 
4.2 SIERPINSKI CARPET 

The Sierpinski carpet is an example of an ideal fractal object analogous to the Sierpinski triangle [24, 25]. The 

carpet is distinctive in that it is made up of main particles that are square in shape. A fundamental square particle makes 

up the first level of the structure. For a level two aggregate, eight primary particles should be arranged in a square loop 

with a square hole the size of the primary particles in the middle. To create a level three aggregate, arrange eight level 

two totals in a square loop, leaving a hole in the center that is the same size as the level two accommodation (Fig. 5 

demonstrates a three-level carpet) [25, 26]. 

 

 

 
 

FIGURE 5. - The Sierpinski carpet during the initial three levels [24] 

 

5. METHODOLOGY OF SUGGESTION FRACTAL TOPOLOGIES 

In this section, two main fractal topologies for creating interconnection networks are presented, both based on the 

design of a hypercube interconnection network. 

 

5.1 THE SIERPINSKI TRIANGLE TOPOLOGY (STT) 

The proposed construction of the Sierpinski Triangle Topology (STT) is based on the fractal recursive formula 

Sierpinski Triangle described in (section IV.A). In the Sierpinski Triangle Topology (STT)-based multiprocessor 

system, processing elements are positioned at the graph's vertices. Edges of the graph represent the point-to-point 

communication links between processors. This architecture is created initially in a one-dimensional (D1) triangle with 

three nodes and three edges. Each node has a degree (n) of two, representing the number of links on the node (the 

number of neighbours nodes). The two-dimensional representation (D2), known as the Agent Sierpinski Triangle, 

comprises two triangles distinguished by six nodes. Noting that the three new nodes have a degree (n) of four. This 

Agent Sierpinski Triangle (D2) represents the critical step to build the base cell for the Sierpinski Triangle Topology 

(STT) to create a three-dimensional shape (D3) derived from it. It is mentioned that all of the processor nodes 

associated with this cell have a degree (n) of four, as seen in Fig. 6. 

 

 
 

FIGURE 6. - The Sierpinski Triangle Topology (STT) 2D (Agent Sierpinski Triangle) and 3D (the primary fractal cell) 

 

The three-dimensional (3D-STT) represents the primary fractal cell for the expansion of the interconnection 

network of this fractal topology, as is the case in the hypercube (D3). So that the distribution of the binary addresses of 

the nodes serves in a manner consistent with the application of the XOR-ing process, which is used to find paths. It is 

possible to create an n-Sierpinski Triangle Topology from two sub-Sierpinski Triangle Topologies, each of which has 

an (n -1) degree, by linking nodes with comparable addresses in both sets of sub-Sierpinski Triangle Topologies. For 

instance, the D4-Sierpinski Triangle Topology depicted in Fig. 7 builds by constructing two 3D-Sierpinski Triangle 

Topologies, each with a degree (n) of four. 
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FIGURE 7. - A four-dimension of Sierpinski Triangle Topology (STT) 
 

Message transfer will be tested via the proposed Sierpinski Triangle Topology (STT). If the sent is sent from the 

source (S) node 0001 to the destination (D) node 1111, the XOR operation will give the result 1110. For the message to 

reach its goal, it will have to be transmitted solely via dimensions 2, 3, and 4 (counting from right to left). Therefore, 

there are three distinct paths that the message might travel, and those paths are highlighted in red in bold in Fig. 8. So 

the set of three paths formed are: 

 

1111011100110001:Path1   

1111110101010001:Path2   

1111101110010001:Path3   

 

 
 

FIGURE 8. - Routing paths in the 4D-Sierpinski Triangle Topology (STT) 

 

The algorithm that sends messages from the sender to the receiver can be described as follows: 

 

Routing algorithm 

Source node: 

1. Specify source node (S: s1, s2 … sn) and destination node (D: d1, d2, … dn) in binary representation.    

                                                                                                         // n: represents the degree of topology. 

2. Procedure XOR operation DSR                                       

                                                                                                         // where R: r1, r2 … rn.. 

3. Specify the number of ones (k) in the (R bits), representing the number of paths and the number of hops per 

path.                                                      

                                                                                                         // where nk 0 . 

4. Determine paths (k). 

Routing nodes: 

1. For i = 1 to k do 

2.  Pass the message according to the path (pi) specified in the step (4). 

3. End. 



Muslim Mohsin Khudhair et al., Al-Salam Journal for Engineering and Technology Vol. 2 No. 2(2023) p. 128-139 
 

 

134 

 

 

The following is a description of the topological qualities that may be gained from Sierpinski Triangle Topology 

(STT): 

1. The general formula for the number of processors or nodes in this topology is: 

 
kN 2.3                                           (4) 

 

    for (D ≥ 1) and (k=0,1,2, 3...m). 

 

2. The number of links (edges) is equivalent to: 

 

2

.nN
L 

                                            (5) 

 

           for (D ≥3) and (n) is the degree (links per node). 

 

3. The bisection distance is: 

 
42.3  nBD                                      (6) 

 

           for (D ≥3). 

 

5.2 THE SIERPINSKI CARPET TOPOLOGY (SCT) 

The fractal recursive formula Sierpinski Carpet, detailed in (section IV.B), serves as the foundation for the 

proposed creation of the Sierpinski Carpet Topology (SCT). As mentioned, the development of this topological system 

is achieved by utilizing the concepts of the hypercube and the mesh as fundamental construction principles. In a 

multiprocessor system based on Sierpinski Carpet Topology (SCT), processing elements are placed at the graph's 

vertices. The graph's edges show how processors can communicate with each other directly.  

The initial design starts from a square in a one-dimensional (D1), with four nodes (processors) and four edges. 

Every node in the network has a degree (n) of two, which denotes the number of links with the node. After that, it 

notices that the two-dimensional (D2), known as the Agent Sierpinski Carpet, is more like the Sierpinski carpet on the 

second level. This Agent Sierpinski Carpet (D2) represents the critical step to build the base cell for the Sierpinski 

Carpet Topology (SCT) to create a three-dimensional shape (D3) derived from it.  When taking a closer look at the 

figure, each node has four links (n), except for the cross’s terminal nodes (n-lower), which are colored red, where these 

nodes only have three links (n-1). Namely, this indicates that half of the total number of nodes has a degree of four, 

while the other half has only a degree of three, as shown in Fig. 9. The Topological properties can be summarized as 

follows: 

The three-dimensional (3D-STC) represents the primary fractal cell for the expansion of the interconnection 

network of this fractal topology, as is the case in the hypercube (D3). So that the distribution of the binary addresses of 

the nodes serves in a manner consistent with the application of the XOR-ing process, which is used to find paths.  

 

 

 
 

FIGURE 9. - The Sierpinski Carpet Topology (SCT) 2D (Agent Sierpinski Triangle) and 3D (the primary fractal cell) 
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It is possible to create an n-Sierpinski Carpet Topology from two sub-Sierpinski Carpet Topologies, each of which 

has an (n -1) degree, by linking nodes with comparable addresses in both sets of sub-Sierpinski Carpet Topologies.        

Note that the 4D-Sierpinski Carpet Topology depicted in   Fig. 10 is built by constructing two sub-Sierpinski Carpet 

Topologies so that the degree of nodes of the built topology (4D) is incremented by one. 

 

 
 

FIGURE 10. - A four-dimension of Sierpinski Carpet Topology (SCT) 
 

Message transfer will be tested via the proposed Sierpinski Carpet Topology (SCT). If the sent is transferred from 

the source (S) node 00111 to the destination (D) node 10100, the XOR operation will provide the result 10011 in this 

scenario. For the message to reach its goal, it will have to be transmitted solely via dimensions 1, 2, and 5 (counting 

from right to left). So, there are three paths the message might travel, highlighted in red in bold in Fig. 11. So the set of 

three paths formed are: 

 

10100001000011000111:Path1   

 10100101010010100111:Path2   

10100101101011100111:Path3   
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FIGURE 11. - Routing paths in the 4D-Sierpinski Carpet Topology (SCT) 

The following is a description of the topological properties that may be gained from Sierpinski Carpet Topology 

(SCT): 

4. The general formula for the number of processors or nodes in this topology for (D ≥ 3) and (k=1,2, 3...m) is: 

 
kN 2.8                                           (7) 

 

5. The bisection distance for (D ≥4) and (k=2,3, 4...m) is: 

 

            

kN
BD 2

2


                                   (8)      

 

6. The number of links (L) for (D ≥4) and (k=2,3, 4...m) is equivalent to: 

 

           
k

ii LL 2*3*2 1                           (9) 

 

For example, the number of links of 3D-Sierpinski Carpet Topology (L3) is 28 (see Fig. 9). Now it can calculate 

the number of links for 4D- Sierpinski Carpet Topology (L4) that has 32 nodes (N) from equation 9: 

 

                                                       
68

2*328*24

28

4

2

3







L

L

L

 
 

And so, when expanding to the rest of the architectures for this topology. 

  

 

In summary, Table 2 shows the obtained topological properties of these suggested interconnection networks with 

hypercubes. 

 

Table 2. - The topological characteristics of suggested topologies and hypercube 
 

Network Diameter N Number of links Bisection distance 

n-cube log2N 2n N.n/2 2n-1 

STT log2N 3.2k N.n/2 3.2n-4 

SCT log2N 8.2k 
2

1.2 iN
iLiL 

 
2n-1 

 

 

6. EXPERIMENT WORK 

In this section, the routing algorithm of the proposed topologies is tested using the Capcarbon version 5 simulator 

and implemented on an HP Laptop (1.60GHz CPU, 20GB RAM).  

Sierpinski Triangle Topology (STT) in Fig 8 tests by a Cupcarbon simulator. Fig. 12 illustrates that the nodes 

actively exchanging messages are responsible for most energy consumption, whilst the energy is not changed in the 

inactive nodes. Fig. 13 shows the calculated total consumption of the nodes. 
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FIGURE 12. - Energy consumption of nodes 4D- Sierpinski Triangle Topology (STT) 

 

 
 

FIGURE 13. -. Net energy consumption of nodes 4D- Sierpinski Triangle Topology (STT) 
 

 

Similarly, Sierpinski Carpet Topology (SCT) in Fig. 11 tests within a Cupcarbon simulator. Fig. 14 shows how 

much energy each node uses during the transmission process along each path. The computed aggregate of the nodes' 

total consumption is depicted in Fig. 15. 

 

 
 

FIGURE 14. - Energy consumption of nodes 4D-Sierpinski Carpet Topology (SCT) 
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FIGURE 15. - Net energy consumption of nodes 4D-Sierpinski Carpet Topology (SCT) 

 

7. CONCLUSION 

Compared to a hypercube, the Sierpinski Triangle topology (STT) noticed a significant decrease in the number of 

nodes and links as large networks grew. This is an excellent way to lower costs because fewer nodes and links are 

needed. It also has shorter average distances and a more significant degree than a hypercube by one, which is better. 

However, this topology has a smaller bisection width and high diameter than a hypercube. 

The Sierpinski Carpet Topology (SCT) has the advantage of having a high bisection width compared to a 

hypercube. That is preferable because it places a lower restriction on the difficulty of parallel algorithms by calculating 

the complexity based on the size of the data set divided by the bisection width in algorithms that need substantial 

amounts of data movement. But the drawback of this topology is that it has a diameter and average distance large than a 

hypercube. 
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