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1. INTRODUCTION 

        Here F  is a field and ( )  ,n ij ijn
F a a F nM + =     is the set of regular matrices. The transpose of 

( )n FA M  is denoted by TA . The algorithm of row co-divisors is given below, similar to the column co-divisor 

algorithm. Instead of the F  field, the  real numbers field is taken. 

        Let ( ), nA B M  be any two matrices. The determinant of the new matrix obtained by writing the 
th

i  row of 

the matrix A  on the thj  row of the matrix B  is called the co-divisor by row of the matrix A  by the row on the matrix 

B . It is denoted by
ıj

AB . Their number is 2n . The matrix co-divisor by row is ( )
ıj ij

AB
 
 
 

[2,3,4,5,6]. 

Example 1.1. Let 
1 3

2 5
A

 
 
 

=  and 
2 1

4 7
B

 
 
 

=  be regular matrices. Matrix of co-divisors by row of matrix A  on 

matrix B  is ( )
ıj ij

AB
 
 
 

.  

11

1 3
5

4 7
AB = −= , 

12

2 1
5

1 3
AB == .

21

2 5
6

4 7
AB = −= ,

22

2 1
8

2 5
AB == . 

( ) 5 5

6 8ıj ij

AB
−  

=    −   
. 

        Likewise, the matrix of rows co-dividing matrix B  over matrix A  is matrix ( )
ıj ij

BA
 
 
 

. 
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11

2 1
8

2 5
BA == , 

12

1 3
5

2 1
BA = −= , 

21

4 7
6

2 5
BA == , 

22

1 3
5

4 7
BA = −= . 

( ) 8 5

6 5
BA
ıj ij

−
=

−

   
     

. 

        For the two matrices satisfying the above conditions, the matrix division is also given by ( )1
:

A A
i jB jiB B

=
 
  

  

[2,3,4]. 

 

 

2. THE RESULTS BETWEEN TRANSPOSE AND DIVISION 

        In the first part of this section, similar properties of the transpose according to the multiplication operation are 

examined. Secondly, it is investigated whether the transpose provides some of its properties compared to the division 

operation. 

For all ( ), nA B M  then, 

T T
A A

TB B


 
 
 

. 

 

Example 2.1. Consider the matrices 
1 3

2 5
A =

 
  

 and 
2 1

4 7
B =

 
  

 given in Example 1.1. above, 

1
0

2

8 1

5 5

T
A

B
=

−

 
  

   
   

 

, 

1 2

3 5

T
A =

 
  

 and 
2 4

1 7

T
B =

 
  

 

1 3

2 5

1 4

2 5

TA

TB

 
− − 

=  
 
  

. 

 

Lemma 2.1. Let ( )nA M be any matrix. Then, 

T
I In n

TA A
=

 
 
 

. 

Proof. Let a regular matrix ij n
A a =    be given.  

. .T Tn n

n nT T

I I
A I A I

A A
=  =  

( ) ( )
1

1

T
T

Tn n

T

I I
A A

AA

−
−  

= = =  
 

 

T

n

T

I I

AA

 
=  
 

.□ 

 

The following lemma is given which simply explains the relationship between the row co-divisors matrix and  

the transpose. 

 

Lemma 2.2. Let ( ), nA B M . Then, 
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( )1
T

T

Tıj ij

B
BA

A A

  
=   

   
. 

Proof. For all ( ), nA B M then 
T

T

B

Aıj
BA ij= . Because, the row co-divisors of matrix B  on matrix A  are the same as 

the column co-divisors of matrix TB  on matrix TA . 

( ) ( )
t

T

B

Aıj ijij

BA ij
   =     

 

( ) ( )1 1 t

T

TT T
B

TATıj jiij

B
BA ij

A AA

    = =         
.□ 

 

Theorem 2.1. Let ( ), nA B M . Then, 

T

T

A B

B A
= . 

 

Proof.  For all ( ), , nA B X M  then  BX A= . The solution of the linear matrix equation BX A=  is 
A

X
B

=  in 

[2,4,5].  Then,  

( )
T T T T TX B ABX A  ==  

T
T T

T

T T
X

A A A
X

BB B

 
 = = 

 
= .□ 

 

Theorem 2.2. Let ( ), , nA B X M . Then, solution of the linear matrix equation XA B= ; 

T
T

T

B
X

A

 
=  
 

. 

 

Proof. The solution of the equation AX B=  is 
B

X
A

= , for all ( ), ,
n

A B X M F . Then 

( )
T T T T TAX B X A B=  =  

( ) ( )1 1
T

T T T T T

T ij ij jiT

X B A ij X B A
AA

  =  =      
 

( )1
T

T
T T

TT ij ij

B
X B A

AA

  
= =   

   
.□ 

 

Lemma 2.3. Let ( )nA M . Then there are unique regular matrices 
1A  and 

2A  such that  1T

A
A

A
=  and 

2

n

T

IA

AA
= . 

 

Proof.  Using the factorization of a matrix, the following equations are shown. 

1
1

T

T T

A AA
A

A A
= =  and 

2 2

n

T

IA A

AA AA
= = .□ 

Theorem 2.3. Let ( ), nA B M . Then there are unique regular matrices 
1E  and 

2E  such that  1

A
E

B
=  and 

2

nIA

B E
= . 

 

Proof.  Again, considering the factorization of a matrix, the following equations are shown. 

1

1

BEA
E

B B
= =  and 1

2 2

nIA A
E

B AE E
= = = . 
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Corollary. It is 
1 2 2 1n nE E I E E I=  =  for 

1E  and 
2E  matrices that satisfy these conditions. □ 

 

Theorem 2.4. Let ( )nA M . Then,  

 

3. RESULTS 

While the solution of the equation AX B=  is always sought in the literature, the solution of the equation XA B=  

 is introduced to the literature from now on. There are many matrices corresponding to the 
A

B
 rational matrix. The 

relationship between linear matrix equations and the transpose of a matrix and the division of matrices is determined. 

 

4.  DISCUSSION 

The determination of the relationship between the equations AX B=  and XA B=  is open to debate. As with real 

 numbers, it is not known whether a rational matrix has the simplest matrix. 

 

5.  CONCLUSIONS 

With matrix transformations, further studies can be brought to the literature. Transformations, matrix division, and  

the trap triple are open to study. 
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