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1. INTRODUCTION 

A bulging disc happens when the disc's outer layer weakens or bulges out beyond its normal limits (called the 
annulus). Spinal stenosis, a consequence of this ailment, refers to narrowing gaps in the spinal column. This narrowing 
puts pressure on the spinal nerve roots that extend from the lower back to the legs [1]. Figure 1 shows the anatomical 

structure of the spine with a disc bulging condition. 

 

FIGURE 1. - Spinal anatomy with a bulging disc [2] 

ABSTRACT: Lower back pain is a common ailment that affects many people resulting from various spinal diseases 
such as disk bulge. Disc bulging, which refers to the narrowing of the intervertebral disc within the spinal canal, can 

cause lower back pain and lead to lumbar spine stenosis. Deep learning algorithms based on artificial intelligence are 
indispensable in the field of medicine, enhancing the precision of medical image diagnosis significantly and the ability 
to process massive amounts of data which contributes to reducing the workload on radiologists and doctors. Therefore, 

Deep learning techniques have become a more helpful tool to overcome this problem. For this purpose, this study 
employed the YOLO-v7, YOLOv8m object detection technique to build a model to detect lumbar spine disc discords 

using MRI data from 291 individuals suffering from lower back pain. The image data utilized for training the model 
were divided into three segments: 70% for training, 20% for validation, and 10% for testing, and validate the model 
results according to evaluation metrics. shows the optimal model validated externally utilizing new lumbar spine MRI 

images and assessment with the radiologist. YOLOv8m achieved a mean average in precision (93.7%), precision 
(90.5%), recall (79.2%), and F1-score (88.6%), accuracy (89.8%). A deep learning model demonstrated similar 
agreement to subspecialist radiologists in detecting and classifying lumbar spine stenosis on lumbar spine MRI. By 

selecting the most suitable YOLO model, doctors can significantly enhance their ability to detect lumbar spine 
stenosis at an early stage and effectively mitigate potential negative consequences for their patients. 
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Lumbar bulging disc (LBD) diagnosis based on clinical symptoms and magnetic resonance imaging (MRI) findings. 

MRI has gained significant popularity due to its non-invasive and painless nature. It is commonly employed to acquire 
comprehensive data regarding the anatomy and function of various bodily organs. [3]. MRI images can be utilized to 
visually examine the lumbar spine, section by section, in three different planes of view: sagittal (from the side), axial 

(from the top down), and coronal (from the front). However, in the case of the lumbar spine, only the sagittal and axial 
planes are commonly employed [4]. 

An adept radiologist can visually inspect MRIs without the aid of any tools and accurately categorize the indications 

of LDB. However, due to the demanding workload and complexity of biological images, clinician s may encounter stress 
and fatigue, and becoming a specialist radiologist requires many years of experience. Prominent research publications 

underscore the benefits of utilizing artificial neural networks (ANNs) and deep learning (DL) in computer-assisted 
medical diagnosis and treatment. DL in AI serves as a solution to mitigate the workload and stress faced by radiologists 
and clinicians [5, 6]. 

Recently, deep learning (DL) algorithms have shown superior performance in many engineering applications[7-10], 
medical applications [11] , and most computer vision tasks, such as image classification[12, 13], subject identification[14, 
15] DL has significantly benefited MRI by enhancing clinical practice, reducing the workload for radiologists and MR 

technologists, and improving throughput [16]. 
DL is a method used to rapidly and consistently detect important characteristics in biological images, namely areas 

that are aberrant or raise suspicion during clinical diagnostics, rather than just identifying objects [17, 18]. 
YOLO, an abbreviation for You Only Look Once, is widely recognized as one of the most effective neural networks 

for object recognition in images, utilizing deep learning techniques. A single Convolutional Neural Network (CNN) is 

used to predict several bounding boxes and the corresponding probability for each box. During the evaluation, the single-
stage YOLO detector could immediately predict class likelihoods and bounding boxes dependent on the given frame. 
The network partitions each training image into a uniform grid of squares, in which each square predicts bounding boxes 

and class probabilities for objects in its region [19]. 
A few of the research employed the real-time single-stage detectors, and the YOLO models to train deep learning 

applications for the detection and prediction of biological images. These models were developed under the technique 
commonly known as the anchor-based technique together with the intersection over union technique. 

This study [17] A novel technique is introduced in this study for precisely localizing the position of discs between 

vertebrae in lumbar MRI scans. It employs YOLOv2-IVD using Enhanced Visual Geometry Group 16 as the underlying 
model. This research assessed a proprietary dataset of 52 patient sagittal T2-weighted lumbar spine MRIs. Results 
demonstrated a remarkably high accuracy of 93.59% in detecting herniations. 

[5] Specializes in the employment of YOLOv3 deep learning system to enable the detection of lumbar disc herniation 
from MRI scans. The analysis is based on a limited number of lumbar MRI scans and supplemented by data augmentation 

in the form of rotating the images, changing their contrast, and adjusting the brightness level. Each of these images was 
then very well converted into an 8-bit grayscale JPEG, as this facilitated the correct manipulation of the brightness and 
darkness. According to the outcomes of the study, the YOLOv3 algorithm with data augmentation methodology 

sufficiently identified the Lumi herniation. The study also sought to establish that using YOLOv3 for LDH diagnosis can 
be useful to radiologists in pointing out exactly where the problem is in the MRI scan. Thus, the publication discussed 
the crucial issue of small dataset size and further work to improve future deep learning systems for diagnosing lumbar 

disc herniation. 
[19] Describes an implementation strategy that will facilitate the grading of intervertebral disc degeneration (IDD). 

Data augmentation was used in the methodology and a deep learning approach involved the use of a Convolutional Neural 
Network and YOLO-V5 model. The study used a dataset, which included 1000 axial T2-w Mid-sagittal lumbar spine 
MRIs. Pfirrmann's grading system was used to categorize these pictures. The algorithm was triangulated with the use of 

precision, recall, and average precision measures; which gave reasonable results. Hence, it is evident that the proposal of 
using the CNN model for grading IDD in sagittal T2-weighted MRI images can be of esteemed assistance to radiologists, 
and is also accurate and efficient as viewed from the results of the study. The major problem in the conducted study was 

the creation of a proper dataset for training the deep learning model, as well as other problems connected to selecting the 
most suitable hyper-parameters. 

[20] Conducted a study to compare the effectiveness of the developed YOLOv7 algorithm on MRI scans of patients 

with LDH. The method used the Precision, Recall, and mAP measures of the YOLOv7 model to analyze its efficiency 
on a dataset of 100 lumbar spine sag-T2 weight MRI images. The precision of YOLOv7 was relatively low while 

detecting LDH at a level of 42. 90%, and a Recall of 44.10%. And an overall performance measured by mAP of 35.00%. 
The study showed that in comparison to the other cases, YOLOv7 performed significantly worse specifically in LDH 
detection in L4-L5 and L5-S1 areas. To the authors’ recommendations, further experiments using a larger number of 

datasets can be performed to determine the most accurate model for the detection of LDH. The main limitat ion faced in 
the course of the study was the unavailability of a large number of datasets for analysis. 

[21] This study will infer and classify LDH using object detection on MRI data to make the detection of LDH more 

accurate. The methodology utilizes the single-stage detection approach of the YOLO versions [5, 6, 7]. The sagittal 
perspective obtained from both upper and lower lumbar MRI scans is utilized. The dataset, consisting of 550 photos, was 
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partitioned into separate training and validation sets. According to the study, the YOLOv5 algorithm demonstrated the 
highest performance in detecting LDH, achieving an accuracy rate of 98.22%. The challenges encompassed the restricted 

quantity of images in the dataset. 
To our knowledge, YOLOv8 has not been as sessed for its capability to recognize LDB in MRI. However, the 

model performs well in detecting objects. Our study aimed to evaluate the diagnostic efficacy of two convolutional neural 

networks (CNNs), YOLOv7 and YOLOv8, and the comparison between them. These models were trained on multiple 
lumbar spine (LS) MRI datasets, and the classification of lumbar spine discs was assessed as either normal or exhibiting 

bulging. 
 

2. METHOD 

The research methodology framework of this study consists of four phases that were carried out sequentially for the 
detection of LDB utilizing the deep transfer learning technique as follows: 
Phase One: Data Pre-Processing: 

 Collecting the LS MRI dataset of patients suffering from lumbar spine discords. 

 Filtering the dataset based on lumbar spine disc conditions (e.g. normal, bulge, herniation). 

 Performing image preprocessing techniques (e.g., resizing, cropping). 

Phase Two: LSS Model Architecture Selection: 

 Choosing appropriate deep learning models (e.g., YOLO V7/V8) for the LDB detection. 

Phase Three: Model Training: 

 Datasets training set splitting (training 70%, validation 20%, testing 10%) 

 Utilizing transfer learning to fine-tune the selected model on the lumbar spine dataset. 

Phase Four: LSS Model Evaluation: 

 Calculating evaluation metrics (e.g., F1-score, precision, recall, accuracy) to assess model performance. 

 Assessing the model’s robustness by validating its performance using test images. 

Figure 2. depicts all the phases of the research methodology procedure. 

 

FIGURE 2. - Integration Methodology Phases of LS disc Detection 
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2.1 Phase One: Data Collection and Pre-Processing  

Phase one focuses on the collection and pre-processing of the LS MRI dataset of patients. 
 

2.2 Data collection 

LS MRI datasets were prospectively collected between September 2023 and January 2042 at Tikrit Teaching 
Hospital and Salah AL-Din General Hospital in Iraq after obtaining all necessary and ethical approvals. 
 

2.3 MRI Modality Selection 

The LS MRI examination protocol comprises several sequences, as illustrated in Figure 3. 

 
 

FIGURE 3. - LS MRI Modality 
Additionally, radiography may introduce an additional sequence; however, the default sequences for LS exams, as 

depicted in Figure 3, remain consistent. This study selected the Sagittal T2-weighted (Sag-T2) MRI modality due to its 
characteristics for displaying anatomical details of the lumbar spine. 

 
2.4 Dataset Description 

The dataset includes LS MRI scans, encompassing both normal and abnormal cases. The dataset comprises a 
comprehensive collection of MRI images from 291 patients, obtained from two institutions. Each image has dimensions 
of 448×448 pixels. The dataset comprises patients of all ages and both genders (male and female). Additionally, MRI 

protocol contains many sequence pulses and that sequence has various parameters that vary from one MRI device to 
another, and these variations directly impact image quality [11]. Table 1 presents details of the MRI pulse sequence 
parameters of acquisition images. 

Table 1. - LS MRI Sag_T2 pulse sequence parameters  

MRI 2 MRI 1  

Salah al-Din 
General Hospital 

Al-Tawfiq 
Hospital 

Source 

Siemens  Hitachi Airis II Manufacture 

1.5 T 0.3 T 
Magnet field 

(tesla) 

Closed MRI Open MRI 
Magnet field 

(type) 

Sag_T2_TSE Sag_T2_FSE 
Sequence pulse 

Type 

3500 3000 
Repetition Time 

(msec) 

91 120 
Echo Time 

(msec) 
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4.0 6.0 
Slice Thickness 

(mm) 

4.0 6.5 
Spacing Between 

Slices (mm) 

260 350 
Field of View 

(mm) 

256 X 192 256 X 168 
Matrix (Freq. x 

Phase) 

197 Hz 34.1 Hz 
Bandwidth 
(Hz/pixel) 

15 9 Number of slices  

 

Here, we shall briefly discuss these sequences as follows: 
 
TR (Repetition Time):  

TR refers to the interval of time between consecutive pulse sequences or repetitions. The unit of measurement is 

milliseconds (ms). A longer TR can increase the signal intensity and is often used in sequences where T2 weighting is 
desired [22] as shown in Figure 4. 

 
 

FIGURE 4. - Effect of increased TR weight on image quality [23] 
 

TE (Echo Time): 

       TE refers to the duration from when the radiofrequency pulse is applied to when the signal echo reaches its highest 

point. The unit of measurement is milliseconds (ms). Short TE values are associated with T1-weighted images, while 
longer TE values are related to T2-weighted images [24]. 
 

NEX (Number of Excitations):  

NEX represents the number of excitations (NEX) or signal averages/acquisitions (NSA). Increasing NEX improves 
the signal-to-noise ratio (SNR) but prolongs scan time [25] as shown in Figure 5.  

 
 

 
 

FIGURE 5. - Effect of increased NEX average on image quality [23] 
 

Slice Thickness: 

Slice thickness refers to the thickness of each imaging slice and is typically measured in millimeters (mm). Thinner 
slices provide higher resolution but may increase scan time [26] as shown in Figure 6. 
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FIGURE 6. - Effect of increased slice thickness on image quality [23] 

 
FOV (Field of View):  

       FOV refers to the physical dimensions of the imaging area and is typically quantified in millimeters. It determines 
how much anatomy is covered in each image. A larger FOV captures more anatomy but may result in a lower resolution 
[27] as shown in Figure 7.  

 
FIGURE 7. - Effect of Increased FOV on image quality [23] 

 
Matrix:  

       The matrix represents the total number of pixels in both the rows and columns of the image. Larger matrix sizes 

result in higher spatial resolution but may increase data acquisition time and storage requirements [28] as shown in Figure 
8. 

 
FIGURE 8. - Effect of Increased Matrix size on image quality [23] 

 

The MRI lumbar spine scan includes many sequences such as (SAG_T2, SAG_T1, MYLO, Ax_T1, and Ax_T2), in 
our study, we chose T2 weight. The image contrast in T2-weighted imaging (T2WI) is manipulated by modifying the 
repetition time (TR) and echo time (TE). T2-weighted images utilize a lengthy repetition time (TR) ranging from 3000 

to 6000 milliseconds and a prolonged echo time (TE) between 90 and 110 milliseconds. On T2-weighted images (T2WI), 
fluids have a bright appearance, often known as hyperintensity. Consequently, regions that contain cerebrospinal fluid 

(CSF), such as the ventricles of the brain or the canal of the spinal cord, will exhibit a bright appearance in T2-weighted 
images [29]. Figure 9 shows the brightness level of the lumbar spine side view anatomy. The color gradients and 
variations between image pixels are crucial for deep learning algorithms. That's why we utilized  T2WI to get the most 

accurate diagnosis for the condition of the intervertebral discs. 
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FIGURE 9. - T2-WI MRI Image of the lumbar spine [30] 

2.5 Dataset filtering 

Fundamentally, with the assistance of a radiologist with 10 years of expertise in  diagnosing lumbar spine diseases, 
the dataset was filtered and classified according five most lumbar spine degenerative changes. Noise and artifact images 

were excluded. Our work is divided into two classes: normal and bulging discs and excludes other lumbar spine disease 
cases as shown in Figure 10. 

 
 

FIGURE 10. - MRI dataset filtering and classification 
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After the filtering process, we must balance images between normal and bulging cases by choosing three slices 
(between 6 to 9) that show the best view of the sagittal view of the lumbar spine as shown in Figure 11. 
 

 

FIGURE 11. - MRI Sag_T2 images slices 
 

2.6 Dataset pre-processing 

The dataset pre-processing includes the following steps: 
1. Use the Radiant Dicom viewer software to convert DICOM file types to jpeg images, and each image has a 

resolution of 448 x 448 pixels. 
2. Using the polygon annotation technique (by Robflow tool), it has manually labeled the mid-sagittal lumbar spine 

disc selected at the anatomical level of the intervertebral disc between L4 and L5 (the vertebra most prone to 
spinal degenerative changes due to its specific morphology and function) as shown in Figure 12. 

3. Stretch the image size to 640 × 640 to prepare it for training using the YOLOv7,8 models. 

4. Color System: Gray Scale 
5. Horizontal crop 15 %. 
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FIGURE 12. - MRI dataset annotation 

 

2.7 Phase Two: Model Architecture Selection 

Phase two focuses on choosing the deep transfer learning object detection YOLO model which is a commonly used 
single-stage target detection algorithm in real-time systems because of its high running speed and accuracy in detecting 

small objects in images [31]. 
 

2.8 YOLOv7 Object Detection Architecture 

The publication of YOLOv7 [32] Occurred in July 2022 on ArXiv, authored by the same individuals who created 
YOLOv4 and YOLOR. At that moment, it outperformed all existing object detectors in terms of both speed  and accuracy, 

operating within a range of 5 frames per second (FPS) to 160 FPS. Similar to YOLOv4, it underwent training solely using 
the MS COCO dataset, without utilizing pre-trained backbones. YOLOv7 introduced several architectural modifications 
and a range of bag-of-freebies techniques, resulting in improved accuracy without any impact on inference speed, solely 

impacting the training duration. Figure 13 shows the detailed architecture of YOLOv7. 

 
 

 

FIGURE 13. - Architecture detail of YOLOv7 [33] 

The YOLOv7 employed the Extended efficient layer aggregation network (E-ELAN) backbone, model scaling, and 
model re-parameterization to achieve a compromise between detection efficiency and precision [33]. 

 

2.9 YOLOv8 Object Detection Architecture  

Currently, YOLO is considered to be one of the most rapidly expanding and superior algorithms. The latest version, 
YOLOv8, was launched in 2023. By implementing enhancements to the detection features in YOLOv8, we anticipate 

that the accuracy of LSS detection can be improved. YOLOv8 is a highly recommended option for various applications 
involving object identification, instance segmentation, and image classification because of its fast speed, precise 

accuracy, and user-friendly interface [34]. 
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Ultralytics, the company responsible for the development of YOLOv5, published YOLOv8 [35] In January 2023. 

YOLOv8 has five different scaled versions: YOLOv8n (nano), YOLOv8s (small), YOLOv8m (medium), YOLOv8l 
(large), and YOLOv8x (extra-large). YOLOv8 is capable of performing many vision tasks including object identification, 
segmentation, pose estimation, tracking, and classification. 

Figure 14 shows the detailed architecture of YOLOv8. YOLOv8 utilizes a comparable underlying structure as 
YOLOv5 but with modifications to the CSPLayer, which is now referred to as the C2f module. The C2f module, which 
incorporates two convolutions and a cross-stage partial bottleneck, enhances detection accuracy by integrating high-level 

characteristics with contextual information. 

 
FIGURE 14. - Architecture detail of YOLOv8 [33] 

 
The YOLOv8 model has a redesigned CSPDarknet53 backbone and introduces the C2f module as a replacement for 

YOLOv5's CSPLayer. The model includes a spatial pyramid pooling fast (SPPF) layer to efficiently pool features. Every 
convolution operation incorporates batch normalization and SiLU activation. The head is separated to allow for 

autonomous processing of objectness, classification, and regression tasks. Furthermore, YOLOv8 provides a semantic 
segmentation model called YOLOv8-Seg, which utilizes a CSPDarknet53 backbone and two segmentation heads. 

YOLOv8 demonstrates superior performance in object detection and semantic segmentation benchmarks, while also 
maintaining exceptional speed [34]. 

 

2.10  Phase Three: Model Training 

 Phase three will split filtered images into three groups (training images 70%, validation images 20%, testing images 
10%). Google Colaboratory environment Python 3.7 version was used to train and validate the algorithms with batch size 

16, epoch 100, and image size 640 × 640 pixels. 
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2.11  Phase Four: Model Evaluation and Validation 

 Phase four checks the model performance through evaluation metrics. 

 Evaluation metrics are essential for any project as they are used to measure the quality of the model. There exists a 
wide variety of evaluation metrics. We employed the mAP, Precision, Recall, and F1-score criteria to evaluate the 
YOLOv7 and YOLOv8 models. 

The evaluation metrics are explained as follows: 
 

Precision: Precision on the other hand is a metric used to determine a network accuracy in identifying targets at a 
given threshold that is formulaically defined as: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑃 )                  (1) 
Recall: is one of the metrics, which provide information about the network’s ability to find its target and equals : 

𝑟𝑒𝑐𝑎𝑙𝑙 =   𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 )                       (2) 

Considering the specifics of this particular dataset, it is sufficient to work with a single F1-score metric as an estimate 
of the model’s accuracy. The F1-score is often used to assess the model’s accuracy since it is derived from the synthesis 

of the Precision and Recall indicators, which means that both the precision and recall rates are taken into account. It 
combines all of the model performance metrics into one formula, which gives a clear and nearly precise estimate of the 

general performance of the model. 

                                                   𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 
                       (3) 

The Average Precision (AP), or Mean Average Precision (mAP), is one of the most common evaluation measures 
used when determining object detection models’ efficiency. 

                                                    𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑖                                   (4)𝑛

𝑖=1  

 
The evaluation metrics are computed using the formula mentioned previously, taking into account the following 

conditions: 

 True Positive (TP): 

o There are situations in which the model precisely categorizes the image as “bulge”, the actual label as 

well.  

o Regarding the discriminant of the study about LSSD’s detection, TP is the probability of correctly 

classifying patients with bulging discs. 

 True Negative (TN): 

o These are cases where the model correctly predicts “normal” (negative class) when the actual label is 

also “normal.” 

o TN corresponds to correctly identifying patients without bulging discs. 

 False Positive (FP): 

o These are cases where the model predicts a “bulge” (positive class), but the actual label is “normal.”  

o FP represents false alarms—patients predicted to have bulging discs when they don’t. 

 False Negative (FN): 

o These are cases where the model predicts “normal” (negative class), but the actual label is “bulge.” 

o FN corresponds to missing cases—patients with bulging discs that the model fails to detect. 

In summary: 

 TP: Correctly identified bulging discs. 

 TN: Correctly identified normal discs. 

 FP: Incorrectly predicted bulging discs (false alarms). 

 FN: Missed bulging discs (false negatives). 

The confusion matrix is a valuable tool for assessing the effectiveness of a model, particularly in the context of 
medical diagnosis tasks. These values can be used to calculate precision, recall, F1-score, and accuracy. To ascertain the 
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model that would yield the maximum level of accuracy for LDB identification, we intend to compare the performance of 

YOLOv7 and YOLOv8 models based on these metrics. 
 

3. RESULTS 

The suggested approach is based on our private dataset, testing, and comparing YOLOv7, and YOLOv8 models. 
Every model has a different architecture, accuracy, speed, and mathematical operation; we compared the results of all the 
models to choose the best model.  

 
3.1 Result Obtained by YOLOv7 

For this experiment, we employ YOLOv7 to train the gathered data. Table 2 displays the outcomes obtained by 

employing the YOLOv7. 
Table 2. - YOLOv7 Results 

Classes mAP 0.5 precision Recall F1-Score 

Normal-Disk 88.1% 89.9% 75% 81.7% 

Bulging-Disc 91.9% 71.9% 95.8% 82.1% 

Average 90% 80.9% 85.4% 81.9% 

 
The results in Table 2 indicate that the metrics provide insights into the performance of a lumbar spine disc detection 

system.  
The model YOLOv7 achieved results for the average of all classes of mAP0.5 of 90%, precision of 80.9%, recall of 

85.4%, and an F1 score of 81.9%. For the Normal-Disc class, YOLOv7 achieved the following values: mAP0.5 of 88.1%, 

precision of 89.9%, recall of 75%, and an F1 score of 81.7%. YOLOv7 achieved the following values for the Bulging-
Disc class: mAP0.5 of 91.9%, precision of 80.9%, recall of 85.4%, and an F1 score of 81.9%. 

 
 

FIGURE 15. - Confusion Matrix Using YOLOv7 
The classification accuracy values for the bulging and normal Disc, as shown in Figure 15, are 1.00 and 0.83, 

respectively, according to the confusion matrix values. 
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FIGURE 16. - Precision-Recall Curve Using YOLOv7 

Figure 16 indicates that the lumbar spine disc bulge had a precision-recall value of 0.91, whereas the normal average 
had a precision-recall value of 0.88. 

 
FIGURE 17. - YOLOv7 Detection 

Figure 17 illustrates the detection outcomes for lumbar spine disc L4-L5 using YOLOv7. For bulge discs, the 

detection accuracy was between 70% to 80%, while 72% for normal discs. 
 



 
Mohammed A. Abed et al., Al-Salam Journal for Engineering and Technology Vol. 4 No. 1 (2025) p. 1-19 

 

 

 14 

3.2 Results Obtained by YOLOv8m 

For this experiment, we employ YOLOv8m to train the gathered data. Table 3 displays the outcomes obtained by 
employing the YOLOv8m. 
 

Table 3. - YOLOv8m Results 

Classes mAP 0.5 precision Recall F1-Score 

Normal-Disk 89.5% 89.1% 79.2% 83.8 

Bulging-Disc 98% 91.9% 94.5% 93.1 

Average 93.7% 90.5% 86.8% 88.6 

 

The results in Table 3 indicate that the metrics provide insights into the performance of a lumbar spine disc detection 
system. The high recall for bulging discs demonstrates that the model rarely misses them, while the precision for normal 
discs suggests accurate identification. 

The model YOLOv8m achieved results for the average of all classes mAP0.5 of 93.7%, precision of 90.5%, recall 
of 86.8%, and an F1 score of 86.4%. For the Normal-Disc class, YOLOv8m achieved the following values: mAP0.5 of 

89.5%, precision of 89.1%, recall of 79.2%, and an F1 score of 87.9%. YOLOv8m achieved the following values for the 
Bulging-Disc class: mAP0.5 of 98 %, precision of 91.9%, recall of 94.5%, and an F1 score of 85%. 

 
 

FIGURE 18. - Confusion Matrix Using YOLOv8m 
 

From Figure 18 for the bulging and normal Disc, the classification accuracy values are 0.96 and 0.87, respectively, 
based on the confusion matrix values. 
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FIGURE 19. - Precision-Recall Curve Using YOLOv8m 

 
Figure 19 indicates that the lumbar spine disc bulge had a precision-recall value of 0.98, whereas the normal average 

had a precision-recall value of 0.89. 

 

 
 

FIGURE 20. - YOLOv8m Detection 
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Figure 20 illustrates the detection outcomes for lumbar spine disc L4-L5 using YOLOv8m. For bulge discs, the 

detection accuracy was 93%, while 94% for normal discs. 
  

4. DISCUSSION 

A bulging disc occurs when the outer layer of the spinal disc weakens or protrudes outward, while in a herniated 
disc, the outer covering of the disc has a hole or tear. In this research study, we investigated the feasibility of employing 
YOLOv7 and YOLOv8m models for the automated detection of lumbar spine disc bulges in MRI imaging. Our models 

were trained on diverse lumbar spine MRI datasets (Sag_T2 weighted) sourced from various providers and MRI 
manufacturers. 

Table 1 presents the evaluation metrics results for both normal and bulging discs using the YOLOv7 model. 

However, during validation with test images, the accuracy of detecting the L4-L5 lumbar spine vertebra was found to be 
low as shown in Error! Reference source not found. . In contrast, Table 2 demonstrates improved evaluation metrics 

for the YOLOv8m model compared to the YOLOv7 model, both trained on the same dataset. In comparison in validation 
test images, YOLOv8m shows the best results of detection rather than the YOLOv7 model (see Error! Reference source 
not found.,Error! Reference source not found.). 

Among the YOLO models evaluated, YOLOv8m emerged as the most suitable candidate based on comprehensive 
evaluation metrics. 

Table 4 shows a comparative analysis with related studies that used YOLO object detection techniques  

Table 4. - Comparative Analysis of Lumbar Spine Disorder Detection Studies  

 
Ref. Year Lumbar 

spine  

Condition 

Method Dataset 

(Public, 

Private) 

 

No. of 
Subjects 

Dataset 

Modality 
MRI Magnetic 

Field 

Annotation 

Technique  

 Open Closed 

[17] 
2023 Disc 

Herniation 

YOLO-

v2 

Private 52 Single ✖ ✔ Rectangle 

[19] 2023 Disc 
Degeneration 

YOLO-
v5 

Public 200 Single ✖ ✔ Polygon 

[21] 2023 Disc 

Herniation 

YOLO-

v5,6,7 

Public 110 Single ✖ ✔ Rectangle 

[5] 2021 Disc 

Herniation 

YOLO-

v3 

Private 168 Single ✖ ✔ Rectangle 

[20] 2023 Disc 

Herniation 

YOLO-

v7 

Public 20 Single ✖ ✔ Rectangle 

Our 

Study 

2024 Disc Bulge YOLO 

(7,8) 

Private 298 Multi ✔ ✔(0.3T,

1.5T) 

Polygon 

 

Valarmathi, G. et al in 2023 [17]  Shows that the proposed system achieves high accuracy in both IVD localization 
and classification using 2600 MR images from 52 patients it achieves an mAP of 92%.  

W. A.-O. Liawrungrueang et al in 2023 [19] Achieved high accuracy in detecting lumbar spine degenerative changes 

based on the Pfirman classification using the YOLOv5 models.  
A. A. Prisilla et al in 2023 [21] T2-weighted images in the sagittal view and YOLO algorithms are utilized to detect 

lumbar disc herniations. The YOLOv5x non-AUG model had superior results in object detection, exhibiting the highest 
precision and recall scores.  

Y. Tsai et al in 2021[5] It has been demonstrated that deep learning can effectively utilize a small dataset consisting 

of a limited number of medical images. Additionally, the use of data augmentation techniques has been found to enhance 
the performance of deep learning models. The YOLOv3 detection findings exhibited remarkable performance in 
identifying the region affected by lumbar disc herniations. The mean average precision (mAP) value exhibits an increase 

as the dataset undergoes various alterations, ranging from 50-aug to 550-aug, through the utilization of data augmentation 
techniques. Additionally, each lumbar level demonstrates precision that is correlated with the number of cases. The 

percentage of recall was 92% in the sample of 550 individuals in August. The mean average precision (mAP) of the 550-
augmentation group achieved the maximum performance at 92.4%. Both the 500-augmentation and 350-augmentation 
groups exhibited the same performance level of 87%. 

A. A. Prisilla et al in 2023 [20] Assessed the efficacy of YOLOv7 in detecting Lumbar Disc Herniation (LDH) in 
MRI images. The results indicated that YOLOv7 exhibited subpar detection ability for LDH, with a Precision of 42.90%, 
Recall of 44.10%, and mAP of 35.00% using the 100 datasets utilized. The YOLOv7 model demonstrated the highest 
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average precision (AP) in the L3-L4 region, with a value of 65.50%, while the lowest AP was seen in the L4-L5 region, 
with a value of 11.60%. These findings indicate that although YOLOv7 is excellent at detecting common objects, it still 

needs to be further studied. Additional research using larger datasets could assist in identifying the most reliable LDH 
detection model. 

Based on the information provided, we can infer that the previous studies, as indicated in Tab le 4, achieved positive 

results for the detection of lumbar spine discords using both private and public MRI data. However, it is important to 
note that the variation in the quality of MRI images across different MRI devices and pulse sequence parameters used 

significantly affects the accuracy of the model prediction. In this study, we have made significant contributions in 
addressing the challenges found in previous studies, as detailed below: 

Methodological Limitations: Although previous models, such as YOLOv2-v7 models, have shown effectiveness, 

they are surpassed by newer architectures in terms of both accuracy and speed. YOLOv8 introduces enhancements, 
including improved backbone networks and more efficient training strategies. YOLOv8 not only enhances detection 
accuracy but also minimizes computational overhead, rendering it better suited for real-time applications when compared 

to older models. 
Dataset and Diversity: Previous studies frequently relied on smaller datasets with limited diversity, often d erived 

from single MRI devices. This limitation can hinder the model’s generalization of new, unseen data. In contrast, this 
study utilizes a proprietary dataset from multi-center MRI devices, including open and closed magnetic field strengths 
(0.3T, and 1.5T)."  

Labeling and Annotation Technique: The choice of annotation technique plays a crucial role in preparing training 
images for an algorithm. Given the slightly curved angle of lumbar spine discs, particularly in vertebra L4-L5. Our 
approach uses the polygon technique to ensure accurate and detailed annotations. 

For future work to create a robust and reliable system for clinical assistance, it is essential to train the model using a 
large-scale dataset of different MRI magnetic types (0.3T, 0.4T, 1.5T, and 3T). 

 

5. Conclusion 

The study demonstrates the effectiveness of deep learning-based object detection techniques, specifically YOLO 

models, in automating the identification and categorization of lumbar disc bulging from MRI data. Notably, the 
YOLOv8m model outperformed the YOLOv7 model in detection accuracy. While YOLOv7, like other models, relies on 
bounding boxes for localization, these boxes may not precisely capture small annotations, leading to reduced accuracy. 

This automated approach has the potential to enhance patient care, alleviate radiologists’ workload, and improve 
diagnostic accuracy in spinal imaging. The study also underscores the challenges faced by doctors and radiologists in 
precise spinal disorder diagnosis, emphasizing the importance of early detection for effective therapy. Further research 

using larger datasets from diverse MRI sources is recommended to refine the lumbar spine disc bulge detection model. 
This study substantially improves previous work by addressing key limitations. Future research could explore further 

enhancements in model accuracy, integration with other diagnostic modalities, and validation of even larger datasets. 
Notably, leveraging multi-center MRI data has undeniably enhanced diagnostic accuracy, empowering clinical 
practitioners and radiologists to make informed decisions. 

 

Abbreviations 

CSF Cerebrospinal Fluid 

LDB Lumbar Disc bulge  

IVD lumbar intervertebral discs 

CNN 
ddee 

Convolutional Neural Network 
 
 

 
 
Ss 

dd 
 

 
 

ANN Artificial Neural Networks 

DL Deep Learning  

YOLO You Only Look Once 

MRI Magnetic Resonance Imaging 

TR Repetition Time  

TE Echo Time 

NEX Number of Excitations 

FOV Field of View 

 

 

 



 
Mohammed A. Abed et al., Al-Salam Journal for Engineering and Technology Vol. 4 No. 1 (2025) p. 1-19 

 

 

 18 

 

  Funding  

None  

 

ACKNOWLEDGEMENT 

I want to thank radiologist Dr. Aws Qahtan Hamdi. His expertise and insights significantly enriched our 
understanding of lumbar spine imaging and contributed to the quality of our research. 
I would like to thank the engineer Joseph Varghese MRI technical consultant, as his technical expertise and support in 

handling MRI datasets were invaluable throughout the performance of this work. 

 

CONFLICTS OF INTEREST  

The authors declare no conflict of interest 

REFERENCES 

 
[1] A. N. Laiwalla et al., "Lumbar Spinal Canal Segmentation in Cases with Lumbar Stenosis Using Deep-U-Net  

Ensembles," World Neurosurgery, vol. 178, pp. e135-e140, Oct. 2023, doi: 10.1016/j.wneu.2023.07.009. 

[2] H. Gray and H. V. Carter, Gray's Anatomy. Arcturus Publishing, 2013. 
[3] X. Zhao and X.-M. Zhao, "Deep learning of brain magnetic resonance images: A brief review," Methods, vol. 

192, pp. 131-140, Aug. 2021, doi: 10.1016/j.ymeth.2020.09.007. 
[4] A. S. Al-Kafri et al., "Boundary Delineation of MRI Images for Lumbar Spinal Stenosis Detection Through   

Semantic Segmentation Using Deep Neural Networks," IEEE Access, vol. 7, pp. 43487-43501, 2019, doi: 

10.1109/ACCESS.2019.2908002. 
[5]   J. Y. Tsai et al., "Lumbar Disc Herniation Automatic Detection in Magnetic Resonance Imaging Based on 

Deep Learning," Frontiers in Bioengineering and Biotechnology, vol. 11, 2023, doi: 

10.3389/fbioe.2023.1247112. 
[6] Z. T. Al-Qaysi et al., "A comprehensive review of deep learning power in steady-state visual evoked potentials," 

Neural Computing and Applications, 2024, doi: 10.1007/s00521-024-10143-z. 
[7] Z. Al-Qaysi et al., "Generalized Time Domain Prediction Model for Motor Imagery -based Wheelchair 

Movement Control," Mesopotamian Journal of Big Data, vol. 2024, pp. 68-81, 2024. 

[8] Z. Al-Qaysi et al., "Optimal Time Window Selection in the Wavelet Signal Domain for Brain–Computer 
Interfaces in Wheelchair Steering Control," Applied Data Science and Analysis, vol. 2024, pp. 69-81, 2024.  

[9] Z. Al-Qaysi et al., "A Frequency-Domain Pattern Recognition Model for Motor Imagery-Based Brain-Computer 

Interface," Applied Data Science and Analysis , vol. 2024, pp. 82-100, 2024. 
[10] Z. Al-Qaysi, A. Al-Saegh, A. F. Hussein, and M. Ahmed, "Wavelet-based Hybrid learning framework for motor 

imagery classification," Iraqi Journal of Electrical and Electronic Engineering, 2022. 
[11] Z. Al-Qaysi, A. Albahri, M. Ahmed, and S. M. Mohammed, "Development of hybrid feature learner model 

integrating FDOSM for golden subject identification in motor imagery," Physical and Engineering Sciences in 

Medicine, vol. 46, no. 4, pp. 1519-1534, 2023. 
[12] S. M. Samuri, T. V. Nova, B. Rahmatullah, S. L. Wang, and Z. T. Al-Qaysi, "Classification model for breast 

cancer mammograms," IIUM Engineering Journal, vol. 23, no. 1, pp. 187-199, 2022. 

[13] A. Albahri et al., "A trustworthy and explainable framework for benchmarking hybrid deep learning models 
based on chest X-ray analysis in CAD systems," International Journal of Information Technology and Decision 

Making, 2024. 
[14] R. A. Aljanabi, Z. Al-Qaysi, and M. Suzani, "Deep Transfer Learning Model for EEG Biometric Decoding," 

Applied Data Science and Analysis, vol. 2024, pp. 4-16, 2024. 

[15] M. Ahmed, M. D. Salman, R. Adel, Z. Alsharida, and M. Hammood, "An intelligent attendance system based 
on convolutional neural networks for real-time student face identifications," Journal of Engineering Science and 
Technology, vol. 17, no. 5, pp. 3326-3341, 2022 

[16] A. S. Lundervold and A. Lundervold, "An overview of deep learning in medical imaging focusing on MRI," 
Zeitschrift für Medizinische Physik, vol. 29, no. 2, pp. 102-127, May 2019, doi: 10.1016/j.zemedi.2018.11.002. 

[17] G. Valarmathi and S. Nirmala Devi, "Automatic localization and classification of intervertebral disc herniation 

using hybrid classifier," Biomedical Signal Processing and Control, vol. 86, p. 105291, Sept. 2023, doi: 
10.1016/j.bspc.2023.105291.. 



 
Mohammed A. Abed et al., Al-Salam Journal for Engineering and Technology Vol. 4 No. 1 (2025) p. 1-19 

 

 19 

[18] A. S. Albahri et al., "A Trustworthy and Explainable Framework for Benchmarking Hybrid Deep Learning 
Models Based on Chest X-Ray Analysis in CAD Systems," International Journal of Information Technology 

and Decision Making, 2024, doi: 10.1142/s0219622024500019. 
[19] W. A.-O. Liawrungrueang, P. Kim, V. A.-O. X. Kotheeranurak, K. A.-O. Jitpakdee, and P. Sarasombath, 

"Automatic Detection, Classification, and Grading of Lumbar Intervertebral Disc Degeneration Using an 

Artificial Neural Network Model," Diagnostics, vol. 13, no. 4, pp. 663, 2023, doi: 10.3390/diagnostics13040663. 
[20]  A. A. Prisilla et al., "Automatic Detection of Lumbar Disc Herniation Using YOLOv7," in 2023 International 

Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), 17-19 July 2023, pp. 843-844, doi: 
10.1109/ICCE-Taiwan58799.2023.10226718. 

 [21] A. A. Prisilla et al., "An approach to the diagnosis of lumbar disc herniation using deep learning models," 

Frontiers in Bioengineering and Biotechnology, vol. 11, Sept. 2023, doi: 10.3389/fbioe.2023.1247112. 
[22] G. Maslebu, E. S. D. Kusrini, and A. Setiawan, "Analysis of signal to noise ratio from 1.5 tesla MRI head coil 

phantom image on daily quality assurance," Journal of Physics: Conference Series, vol. 1524, no. 1, p. 012026, 

Apr. 2020, doi: 10.1088/1742-6596/1524/1/012026. 
[23] Mri_Master. "MRI Resolution and Image Quality." Available: https://mrimaster.com/index-4/ (accessed Jul. 24, 

2024). 
[24] K. D. Meadows, C. L. Johnson, J. M. Peloquin, R. G. Spencer, E. J. Vresilovic, and D. M. Elliott, "Impact of 

pulse sequence, analysis method, and signal to noise ratio on the accuracy of intervertebral disc T2 

measurement," JOR SPINE, vol. 3, no. 3, p. e1102, Sept. 2020, doi: 10.1002/jsp2.1102. 
[25] V. M. Runge and J. T. Heverhagen, "Number of Averages," in The Physics of Clinical MR Taught Through 

Images, V. M. Runge and J. T. Heverhagen, Eds. Cham: Springer International Publishing, 2022, pp. 46-47. 

[26] V. M. Runge and J. T. Heverhagen, "Slice Thickness," in The Physics of Clinical MR Taught Through 
Images, V. M. Runge and J. T. Heverhagen, Eds. Cham: Springer International Publishing, 2022, pp. 48-49. 

[27] K. Lei, A. B. Syed, X. Zhu, J. M. Pauly, and S. V. Vasanawala, "Automated MRI Field of View Prescription 

from Region of Interest Prediction by Intra-Stack Attention Neural Network," Bioengineering, vol. 10, no. 

1, doi: 10.3390/bioengineering10010092. 
[28] M. Strzelecki, A. Piórkowski, and R. Obuchowicz, "Effect of Matrix Size Reduction on Textural Information in 

Clinical Magnetic Resonance Imaging," Journal of Clinical Medicine, vol. 11, no. 9, doi: 

10.3390/jcm11092526. 

[29] A. M. Shanechi, M. Kiczek, M. Khan, and G. Jindal, "Spine Anatomy Imaging: An Update," Neuroimaging 

Clinics of North America, vol. 29, no. 4, pp. 461-480, Nov. 2019, doi: 10.1016/j.nic.2019.08.001. 

[30] M. D. A. van Gastel et al., "T1 vs. T2 weighted magnetic resonance imaging to assess total kidney volume in 

patients with autosomal dominant polycystic kidney disease," American Journal of Nephrology, 2023, 

doi: 10.1159/000527874. 

[31] P. Huang, S. Wang, J. Chen, W. Li, and X. Peng, "Lightweight Model for Pavement Defect Detection Based on 

Improved YOLOv7," Sensors, vol. 23, no. 16, doi: 10.3390/s23167112. 

[32] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, "YOLOv7: Trainable bag-of-freebies sets new state-of-the-

art for real-time object detectors," arXiv e-prints, p. arXiv:2207.02696, 2022, doi: 

10.48550/arXiv.2207.02696. 
[33] J. Terven, D.-M. Córdova-Esparza, and J.-A. Romero-González, "A Comprehensive Review of YOLO 

Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS," Machine Learning and 
Knowledge Extraction, vol. 5, no. 4, pp. 1680-1716, 2023, doi: 10.3390/make5040083. 

[34] R. Y. Ju and W. Cai, "Fracture detection in pediatric wrist trauma X-ray images using YOLOv8 algorithm," 
Scientific Reports, 2023, doi: 10.1038/s41598-023-39482-w. 

 [35] Contributors. "M. YOLOv8 by MMYOLO." Available: https://github.com/open-

mmlab/mmyolo/tree/main/configs/yolov8 (accessed Jun. 25, 2024). 
 
 

 
 

 
. 
 

https://mrimaster.com/index-4/
https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov8
https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov8

