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1. INTRODUCTION 

Accelerating autonomous vehicle technology has spurred research to improve system performance and economy. 
Advanced deep learning algorithms help autonomous cars see and interact with their environment. Understanding that 

the operating system heavily impacts these algorithms' performance is crucial. Optimal performance in autonomous cars 
requires rigorous assessment and optimization of deep learning algorithms across operating systems, a critical insight 

that this study provides. 
According to recent studies, optimizing inference time, memory use, CPU and GPU utilization, and accuracy is 

crucial for efficient and reliable autonomous car systems. However, research typically isolates components, failing to 

examine and enhance the complete system. In contrast, our study takes a comprehensive approach, considering all these 
factors to ensure the robustness of the autonomous car system [1-4]. This paper proposes a new optimization methodology 
that uses synthetic performance measure generation and the Mountain Gazelle Optimizer (MGO) to find the best deep 

learning algorithm-operating system combo. An effective autonomous vehicle system requires a balanced technique that 
examines various performance indicators simultaneously. This approach provides useful information. Synthetic data 

provides a controlled and reproducible assessment environment, especially during s ystem development. The MGO 
method, which solves difficult optimization problems through iterative refinement and adaptive search techniques, finds 
the optimum configurations that balance accuracy and resource usage [4-6]. The contributions of this work represent 

firstly; performance measurements for deep learning algorithm-OS pairings, secondly using of the Mountain Gazelle 
Optimizer to identify optimal configurations that balance multiple performance metrics, and thirdly Provision of a 
comprehensive analysis of the best-performing configurations, offering practical insights for developers and researchers 

in the autonomous vehicle domain. This optimization framework bridges the gap between isolated performance 
evaluations and holistic system optimization, paving the way for more efficient and reliable autonomous vehicle systems. 

Mountain Gazelle Optimization (MGO) is a metaheuristic algorithm inspired by the behavior of mountain gazelles 
in nature. These animals demonstrate agility and swiftness when avoiding predators or searching for food, characteristics 
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that translate into optimization through efficient exploration and exploitation of the solution space. MGO utilizes these 
traits to refine solutions iteratively, balancing speed and accuracy. It is suitable for solving complex optimization 

problems by minimizing or maximizing specific objectives, such as resource usage or accuracy. 
 

2. LITERATURE REVIEW 

Kebria et al. in 2020: It is difficult to give autonomous systems enough and good task information. To drive well, 
autonomous cars need a solid workspace vision. In machine vision, deep learning and convolutional neural networks are 
the cutting-edge. Researchers are worldwide studying how to create an ideal architecture for deep learning systems, which 

include millions of parameters and components. In this study, the number of layers, filters, and filter size of convolutional 
networks are tested for performance. Multiple models with diverse attributes are built, equally trained, and applied to an 

autonomous automobile in a realistic simulated scenario. Calculating and updating model weights for mean squared error 
values using a novel ensemble technique is also suggested. Performance is evaluated and contrasted based on design 
features for future study. Remarkably, filter count does not affect performance efficiency. Allocating filters with varying 

kernel sizes over layers improves performance significantly. The results of this study will help researchers develop ideal 
network designs for deep learning. Convolutional neural networks for autonomous cars perform better when filters with 
varied kernel sizes are allocated across layers [7]. 

Khan Muhammad et al. in 2020: Information and signal processing technologies improve autonomous driving (AD) 
safety while reducing human driver effort using sophisticated artificial intelligence (AI) approaches. Recently, deep 

learning (DL) has addressed various hard real-world challenges. However, their AD control strengths have not been well 
researched and recognized. DL architectures are reliable and efficient in real time, and this study covers state-of-the-art 
safe AD techniques and their strengths and weaknesses. It also covers measurement, analysis, and execution of DL 

throughout the AD pipeline, focusing on sensor and vision-based road, lane, vehicle, pedestrian, sleepiness detection, 
collision avoidance, and traffic sign detection. They also evaluate numerous evaluated approaches using different metrics 
and criticize their merits and downsides. Finally, this review discusses safe DL-based AD concerns and suggests future 

research, providing a reference for beginners and academics interested in this lively field of Intelligent Transportation 
Systems. Current constraints and future research suggestions must be addressed to increase autonomous driving safety 

using deep learning [8]. 
Huang et al. in 2020: This work uses deep learning and multimodal sensor fusion to improve end-to-end autonomous 

driving scene knowledge and generalization. The end-to-end deep neural network receives the visual image and depth 

information in an early fusion stage. It produces pixel-wise semantic segmentation for scene understanding and vehicle 
control. In high-fidelity simulated urban driving situations, the end-to-end deep learning-based autonomous driving 
model is evaluated against CoRL2017 and NoCrash. The suggested strategy outperforms the previous models in static 

navigation tasks in training and unobserved settings and in additional tasks, with a 100% success rate. Another ablation 
investigation indicates that the model without multimodal sensor fusion or scene comprehension pales in the new 

environment due to erroneous perception. The findings show that multimodal sensor fusion with scene comprehension 
subtask improves our model's performance, proving the deep neural network's practicality and efficacy. The deep neural 
network with multimodal sensor fusion increases autonomous driving and generalization, attaining 100% static 

navigation success compared to previous models [9]. 
Jamil Fayyad et al. in 2020: AVs are projected to transform terrestrial transportation. Smart cars that can make 

judgments and drive themselves are expected to replace regular automobiles. Self-driving cars employ 5G connections 

and sensors to see and understand their surroundings and the distant environment. Meanwhile, local perception, like 
human perception, will benefit short-range vehicle control. Extended perception enables remote event anticipation and 

intelligent behavior to take the vehicle to its destination while meeting s afety, energy management, traffic optimization, 
and comfort objectives. Even though sensor technologies have improved in effectiveness and applicability for AV 
systems in recent years, sensors can still fail due to noise, ambient conditions, or manufacturing defects, so using a single 

sensor for autonomous driving tasks is not recommended. The practical approach is to use many competing and 
complementary sensors that work together to overcome their flaws. This article reviews cutting -edge strategies for 
improving AV performance in short-range or local vehicle situations. Recent works using deep learning sensor fusion 

algorithms for perception, localization, and mapping are highlighted. The paper finishes with current trends and future 
research directions. Multisensor deep learning sensor fusion techniques increase autonomous vehicle perception and 

localization by overcoming sensor deficiencies and improving safety, energy management, and traffic optimization [10]. 
Nguyen Quang Hieu et al. in 2021: In dynamic conditions, autonomous vehicles (AVs) must function safely and 

effectively. AVs with Joint Radar-Communications (JRC) features can improve driving safety by using radar detection 

and data exchange. However, maximizing the AV system's performance with two functions in unpredictable and dynamic 
contexts is difficult. We first present an intelligent optimization methodology based on the Markov Decision Process 
(MDP) to assist the AV choose JRC operating functions in a dynamic and unpredictable environment. Our system uses 

current deep reinforcement learning improvements to identify the ideal AV policy without previous environment 
knowledge. Our system is more scalable because we add a Transfer Learning (TL) method that lets the AV use its past 

experiences to speed up training in a new environment. The proposed transferable deep reinforcement learning framework 
decreases AV obstacle miss detection probability by 67% compared to standard deep reinforcement learning systems, 



Jamal Nasir Hasoon et al., Al-Salam Journal for Engineering and Technology Vol. 4 No. 1 (2025) p. 113-123 

 

 115 

according to extensive simulations. From driver assistance to complete automation, our technology may be used in many 
autonomous driving scenarios using deep reinforcement learning and transfer learning. This transportable deep 

reinforcement learning system decreases autonomous vehicle obstacle miss detection probability by up to 67% compared 
to standard methods, benefiting diverse driving scenarios [11]. 

Yu et al. in 2021: A combination of autonomous and manual cars will likely remain in the intelligent transportation 

system (ITS) for decades. Thus, before driverless vehicles become mainstream, safety risks from this combination of 
autonomous and manual vehicles must be addressed. As the ITS system has become more complicated, autonomous cars 

have challenges including low intention recognition and poor real-time driving direction prediction, which threaten mixed 
traffic system safety and comfort. For autonomous cars to forecast driving direction in real time based on the traffic 
situation, researchers must develop a more sophisticated ITS. We offer a deep learning-based traffic safety solution for 

5G-enabled ITSs with autonomous and manual cars in this study. This technique uses a driving trajectory dataset and a 
natural-driving dataset as network inputs to long-term memory networks in 5G-enabled ITS. The SoftMax function 
calculates the probability matrix of each intention. Fusing the mean rule in the decision layer yields the final intention 

probability. Experimental results reveal that the suggested system improves accuracy, real-time intention detection, and 
the lane change problem in mixed traffic environments with intention recognition rates of 91.58% and 90.88% for left 

and right lane changes, respectively. The deep learning-based traffic safety solution enhances autonomous vehicle 
intention recognition rates, improving safety and comfort in mixed traffic [12]. 

Yang et al. in 2021: Autonomous systems are widely used in daily life as civilization advances. Due to this tendency, 

autonomous cars are becoming more popular. In edge computing settings, insufficient computing force and 
communication bandwidth and the absence of autonomous decision-making capabilities reduce autonomous vehicle 
safety. A deep reinforcement learning (DRL) method combining DL with RL can give quick convergence and effective 

decision-making. We present a double bootstrapped SAC-D (DBSAC-D) method based on soft-actor–critic (SAC) and 
SAC-discrete (SAC-D). Introduce Bootstrap to improve action space exploration, properly estimate action value, 

accelerate convergence, and decrease computing force consumption. We also suggest a unique sampling technique that 
balances novelty and relevance of sampled data and increases network model training value. The experimental findings 
demonstrate that our method performs well in many traffic situations and converges quickly. The double bootstrapped 

SAC-D method increases exploration, judgment, and data balancing for autonomous vehicle safety and convergence 
speed [13]. 

Pavel et al. in 2022: Autonomous vehicle systems (AVS) have grown exponentially in the past decade, especially 

owing to artificial intelligence advances, affecting social, road, and transportation systems. Due to sensor fusion costs 
and a lack of top-tier road uncertainty solutions, the AVS is still distant from mass manufacturing. Deep learning-based 

techniques may be preferable for producing practical AVS to minimize sensor reliance, boost production, and improve 
research. We reviewed the literature on deep learning for AVS over the past decade for real-world application in key 
disciplines with this goal in mind. The systematic review of AVS implementing deep learning covers perception analysis 

(vehicle detection, traffic signs and light identification, pedestrian detect ion, lane and curve detection, road object 
localization, traffic scene analysis), decision making, end-to-end controlling and prediction, path and motion planning, 
and augmented reality-based HUD, analyzing R-based research from 2011 to 2021. The literature is also analyzed for 

final representative outcomes like AR-HUD visualization for early warning, road markings for improved navigation, and 
enhanced safety with overlapping on vehicles and pedestrians in extreme visual conditions to reduce collisions. The  

literature study analyzes state-of-the-art deep learning approaches that use RGB camera vision rather than complicated 
sensor fusion. It should enable the quick development of cost-effective and secure autonomous vehicle systems. Deep 
learning-based RGB camera vision can quickly construct cost-effective and secure practical autonomous car systems, 

increasing perception, decision-making, and safety [14]. 
Lu et al. in 2023: Safety is paramount for autonomous cars in their ever-changing environment. However, 

autonomous vehicle operation is complex and unclear. An autonomous vehicle must avoid static and dynamic barriers in 

the operating environment. Environmental configuration techniques for autonomous cars have shown promise. However, 
they are ineffective in a constantly changing environment. Thus, autonomous vehicles must be tested in realistic, 

constantly changing environments to avoid crashes. Agents actively interact with the environment, making 
Reinforcement Learning (RL) promising for complex tasks requiring environmental adaptation. We propose Deep 
Collision, an RL-based environment configuration learning system that intelligently learns autonomous vehicle crash-

causing environment configurations. The reward function in Deep Collision is built using Deep Q-Learning as the RL 
solution and collision probability as the safety measure. Four Deep Collision models were trained and compared to 
random and greedy baselines. We found that Deep Collision generated more collisions than baselines. We propose 

selecting the best Deep Collision time for different road constructions. An RL-based environment configuration learning 
system, Deep Collision, helps autonomous cars avoid collisions in constantly changing settings [15]. 

Li et al. in 2023: For continuous adaption of Deep Reinforcement Learning (DRL) models in dynamic situations, 
autonomous cars and robotic search and rescue require effective on-device training. Our comprehensive practical 
experiments show that on-device real-time DRL requires balancing timing and algorithm performance under memory 

limits, which motivates our research. The batch and replay buffer sizes for DRL training need to be co-optimized because 
of this careful balance. Both time and algorithm speed are greatly affected by how these settings are set up, but both 
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require a lot of memory. This study walks you through R3, a complete way to control timing, memory, and algorithm 
performance in device-based real-time DRL training. To make timing, memory footprint, and replay buffer sizes as good 

as possible, R3 has a deadline-driven feedback loop, good memory management, and a runtime planner with heuristic 
analysis and a profiler. By working together, these parts make on-device DRL training faster, better at running algorithms, 
and less likely to make out-of-bounds errors. Using several DRL frameworks and benchmarks, we put R3 through a lot 

of tests on three hardware platforms that are used by autonomous robotic systems. And to show how useful it is, we 
connect R3 to a famous self-driving simulator. R^3 works well on many systems, with consistent latency and predictable 

time with little extra work. It improves timing, memory, and algorithm performance in on -device real-time Deep 
Reinforcement Learning for self-driving robots, making mistakes due to lack of memory less likely [16]. 

A lot of study has been done on how to make deep learning algorithms work best for self-driving car systems, but 

there are still some gaps. Most research only looks at certain parts of a system, like accuracy or inference time, without 
looking at how well it works as a whole, taking into account things like memory usage, CPU and GPU utilization, and 
accuracy. Furthermore, not a lot of study has been done on synthetic performance measures that offer scalable and 

repeatable settings for improvement. To fill in these gaps, this study suggests a way to optimize that looks at and balances 
all performance indicators at the same time. 

 

3. METHODOLOGY 

This research presents a novel approach to improve autonomous car deep learning algorithm performance across 

operating systems. Synthetic performance data generation and the Mountain Gazelle Optimizer (MGO) determine the 
best OS and DL algorithm configurations based on inference time, memory usage, CPU usage, GPU usage, and accuracy. 
The proposed Methodology contains the following steps: 

       Step 1: Generate Synthetic Data Instead of hardware testing, we can mimic real-world events using synthetic data to 
evaluate OS and DL pairings. Included OS and DL algorithms : 
• Operating Systems (OS): Windows, Linux, macOS, Ubuntu, Fedora, Debian, CentOS, RHEL, Arch, and Manjaro. 

• Deep Learning Algorithms (DL): YOLO, SSD, RCNN, Faster RCNN, DeepLab, UNet, MobileNet, and others. 
For each combination, synthetic metrics are generated for: 

• Inference Time (ms): Time taken for the algorithm to make predictions. 
• Memory Usage (MB): Memory consumption during execution. 
• CPU Usage (%): Percentage of CPU resources used. 

• GPU Usage (%): GPU resource consumption. 
• Accuracy (%): Prediction accuracy. 

       These metrics depict a variety of operating scenarios by using random system load values. 

       Step 2: Data-normalization Dataset min-max normalization ensures fair comparisons across measures. This ensures 
no metric dominates optimization. 

       Step 3: Define Fitness Function Fitness maximizes accuracy while conserving resources. The formula is: 
       Fitness=Accuracy−(Inference Time+Memory Usage+CPU Usage+GPU Usage) 
       This fitness function ensures that the selected configuration balances accuracy and resource efficiency. 

       Step 4: Mountain Gazelle Optimization (MGO) Mountain gazelle behavior influenced the MGO algorithm.  
       It optimizes OS-DL combinations iteratively using the fitness function: 

• Initialization: Random selection of OS-DL combinations, followed by fitness evaluation. 

• Iterative Refinement: New solutions are generated using exploration and exploitation strategies, mimicking gazelle 
movement. 

• Convergence: The process continues for a set number of iterations or until no significant improvement is observed. 
       Step 5: Results The MGO algorithm found Ubuntu-RCNN to be the best. Together, this accomplished: 

• Inference Time: 15.85 ms. 

• Memory Usage: 2719.19 MB. 
• CPU Usage: 78.85%. 
• GPU Usage: 52.76%. 

• Accuracy: 94.18%. 
The combination balances accuracy and resource consumption well, making it suited for resource-constrained 

autonomous vehicle systems.  
The MGO algorithm and synthetic data optimize deep learning models in real-world autonomous car applications in 

this framework. This strategy appears to be efficient for real-time systems with limited processing resources. With more 

real-world data and DL algorithms, the outcomes will improve. 
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3.1 GENERATION OF SYNTHETIC PERFORMANCE METRICS 

This stage generates synthetic data for OS-DL algorithm combinations. Inference time, memory, CPU, GPU, and 

accuracy are performance measures. Synthetically created measurements represent 10 operating systems and 10 deep 
learning methods. Table 1 lists OS-DL combinations and their performance metrics. 

The following metrics are calculated for each combination: 

• Inference Time (ms): Time required for the DL algorithm to process data and generate predictions. 
• Memory Usage (MB): The amount of memory consumed during execution. 

• CPU Usage (%): The percentage of CPU resources used by the algorithm. 
• GPU Usage (%): GPU resources consumed during execution. 
• Accuracy (%): The percentage of correct predictions made by the DL algorithm. 

The generation of synthetic performance measurements uses random sampling within predetermined ranges to 
simulate real-world performance for each OS and DL combination. The synthetic data table format is below: 

Random Value 1, 2, 3, etc.: Each of these represents a unique random value within a specified range for a given 

metric. 
Table 1 quick comparison between different OS and DL combinations based on their synthetic performance metrics. 

Table 1. - Synthetic Performance Metrics for OS-DL Combinations 

OS Algorithm 
Inference time 

(ms) 
Memory usage 

(MB) 
CPU usage 

(% ) 
GPU usage 

(% ) 
Accuracy 

(% ) 

Windows CNN 637.0861 7704.286 86.5997 61.90609 86.56019 

Windows RNN 571.594 2848.502 93.97793 61.0669 89.91302 

Windows LSTM 369.5553 8019.459 90.29236 42.31567 84.54555 

Windows GAN 701.745 4555.878 79.51501 56.59725 75.82458 

Windows Transformer 1273.038 3836.963 71.68579 58.31809 89.73642 

Windows DNN 1185.176 3498.043 73.14055 57.5828 85.41805 

Windows Autoencoder 866.4131 3106.092 47.92732 72.1887 91.58758 

Windows VAE 1298.817 4427.683 59.10223 67.00128 82.60229 

Windows CapsNet 672.0382 5721.544 58.40993 79.28466 81.8817 

Windows ResNet 1096.27 4301.438 75.36292 57.06907 89.10913 

Linux CNN 1172.626 6650.797 96.97495 82.63791 90.979 

Linux RNN 1414.062 3030.955 63.81923 27.71364 84.55462 

Linux LSTM 719.2434 3828.094 90.12193 50.69169 85.93308 

Linux GAN 1096.966 3559.638 90.89008 38.72753 89.73774 

Linux Transformer 1449.469 4192.294 60.22088 80.77307 91.24114 

Linux DNN 1129.007 6927.622 53.33201 44.71562 86.04282 

Linux Autoencoder 1083.638 5777.459 59.89041 23.49571 83.73179 

Linux VAE 791.4425 6977.637 81.77741 78.57113 83.08322 

Linux CapsNet 669.5942 7008.144 88.19219 61.18641 89.56451 

Linux ResNet 944.416 5588.67 71.38426 28.39805 88.64735 

macOS CNN 328.2863 5818.462 65.7178 55.59995 94.07566 

macOS RNN 674.2215 4962.298 88.9998 38.72789 81.07772 

macOS LSTM 625.2639 3167.328 94.76609 76.87098 90.86765 

macOS GAN 1458.607 7602.4 65.64937 79.62795 80.78684 

macOS Transformer 1488.184 8376.548 72.72014 45.5026 88.36761 

macOS DNN 827.1078 7208.089 88.73288 25.38237 89.59673 

macOS Autoencoder 704.7994 3410.436 50.39394 38.56883 91.31492 

macOS VAE 789.3631 5712.744 84.5268 48.72689 90.57673 

macOS CapsNet 1512.447 4285.516 77.38719 47.64567 82.27261 

macOS ResNet 533.1983 6118.342 74.6152 29.83133 89.67188 

Ubuntu CNN 1117.439 3437.371 57.24474 54.26169 94.8565 

Ubuntu RNN 666.2608 6532.813 89.27288 39.25825 90.19503 
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OS Algorithm 
Inference time 

(ms) 
Memory usage 

(MB) 
CPU usage 

(% ) 
GPU usage 

(% ) 
Accuracy 

(% ) 

Ubuntu LSTM 699.394 5993.835 81.14237 61.07493 83.26406 

Ubuntu GAN 1418.833 4656.758 65.64726 37.03876 81.81786 

Ubuntu Transformer 1345.321 3099.527 80.48372 51.32479 90.87104 

Ubuntu DNN 574.3664 6445.626 67.40309 76.52015 86.23769 

Ubuntu Autoencoder 639.9064 2769.494 86.61121 68.25366 83.0953 

Ubuntu VAE 1142.983 7503.333 78.31843 58.19008 79.62778 

Ubuntu CapsNet 643.1028 8093.573 93.91714 64.92128 83.08545 

Ubuntu ResNet 814.2886 6828.33 91.57574 75.78975 92.67925 

Fedora CNN 877.8285 2504.84 58.08144 82.89879 91.06429 

Fedora RNN 410.1168 3108.829 84.85758 25.3037 82.25131 

Fedora LSTM 871.2971 6351.371 81.99022 43.00762 91.97051 

Fedora GAN 760.974 4684.938 88.60615 67.48164 86.98447 

Fedora Transformer 1323.374 6409.852 63.74699 58.38579 88.59121 

Fedora DNN 643.9896 8138.063 67.6894 74.06256 90.68025 

Fedora Autoencoder 1025.59 5065.559 70.96067 47.08847 82.34292 

Fedora VAE 1208.575 4284.634 56.02127 64.79192 78.65666 

Fedora CapsNet 1490.459 8428.179 94.50944 51.24825 78.23185 

Fedora ResNet 1335.487 5011.923 94.56616 79.9991 93.11806 

Debian CNN 565.004 4310.586 92.55683 42.18454 86.69493 

Debian RNN 1012.481 8116.929 86.32134 59.20367 81.36047 

Debian LSTM 934.2569 8140.323 58.44386 60.06312 94.28322 

Debian GAN 1314.845 6951.796 86.80185 52.97456 75.87184 

Debian Transformer 1490.297 7860.68 94.68289 85.66203 90.06805 

Debian DNN 901.5163 7089.771 79.24838 63.60818 92.16213 

Debian Autoencoder 1106.505 4094.171 61.90123 25.16901 86.93936 

Debian VAE 487.7394 5393.588 77.79107 44.33285 84.8625 

Debian CapsNet 580.5002 3020.354 90.72662 50.72991 79.90591 

Debian ResNet 970.0189 7096.961 62.2803 61.25898 88.51208 

CentOS CNN 346.5135 5188.128 77.03176 64.62009 92.26091 

CentOS RNN 1473.437 5597.802 69.53304 72.71117 83.79165 

CentOS LSTM 767.0228 2670.738 53.16613 85.83361 93.70372 

CentOS GAN 1265.572 5194.613 65.10507 42.82185 75.00486 

CentOS Transformer 1204.149 7287.576 86.4079 53.99669 92.72919 

CentOS DNN 1137.897 5626.124 77.52743 48.078 87.22958 

CentOS Autoencoder 652.5768 6571.292 45.64771 26.384 80.55203 

CentOS VAE 492.7652 7732.764 84.55363 55.02791 77.46751 

CentOS CapsNet 1041.616 5593.483 64.10128 54.56029 83.97757 

CentOS ResNet 1054.265 6274.071 54.94807 47.60369 91.75516 

RHEL CNN 752.8226 7138.939 82.93468 31.40541 85.70569 

RHEL RNN 1106.661 2659.068 81.3599 81.41381 88.05664 

RHEL LSTM 718.7614 6059.729 73.07963 61.64577 95.18051 

RHEL GAN 924.7129 8563.262 95.11938 44.78956 71.38723 

RHEL Transformer 710.8558 3109.331 63.77772 74.15034 87.42713 

RHEL DNN 718.9756 7369.252 51.04724 69.79577 87.53669 

RHEL Autoencoder 450.4401 6210.749 73.30243 68.26096 88.82085 

RHEL VAE 1293.655 4292.207 62.45246 70.78504 88.10252 
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OS Algorithm 
Inference time 

(ms) 
Memory usage 

(MB) 
CPU usage 

(% ) 
GPU usage 

(% ) 
Accuracy 

(% ) 

RHEL CapsNet 1540.505 5234.444 72.25274 72.37347 83.11205 

RHEL ResNet 1337.682 7636.318 71.44674 68.29791 92.52726 

Arch CNN 392.8115 7415.317 75.26262 77.85202 88.2005 

Arch RNN 1385.076 4835.21 55.48769 79.32292 81.27801 

Arch LSTM 653.348 7900.372 95.72793 63.2594 90.84572 

Arch GAN 993.2901 4488.586 71.47525 68.62592 85.04749 

Arch Transformer 1470.737 7737.709 63.64824 64.72102 87.34535 

Arch DNN 949.5289 4949.183 89.94669 44.30033 86.0536 

Arch Autoencoder 471.5429 6592.913 72.81981 25.56175 81.00928 

Arch VAE 1186.018 3036.578 89.51812 68.25581 77.22023 

Arch CapsNet 634.8377 8621.174 72.3451 51.27339 90.19199 

Arch ResNet 1352.524 8414.606 85.39526 47.69428 88.501 

Manjaro CNN 999.4322 5350.425 71.2111 83.44481 86.11197 

Manjaro RNN 941.8876 2568.122 76.08973 28.3782 81.66345 

Manjaro LSTM 461.6499 6095.262 86.31806 63.83539 95.47042 

Manjaro GAN 912.3576 4442.844 93.61256 46.17979 89.26445 

Manjaro Transformer 613.3699 8819.273 61.7264 84.55716 90.16621 

Manjaro DNN 1392.965 2742.779 74.92344 78.31164 89.70788 

Manjaro Autoencoder 884.9888 6204.917 65.45435 54.51569 87.01177 

Manjaro VAE 1396.216 2872.678 66.80045 82.17345 89.35396 

Manjaro CapsNet 1005.657 6458.782 68.37263 41.7823 84.95548 

Manjaro ResNet 818.017 5960.302 56.34259 80.59171 93.91726 

 

4. DATA NORMALIZATION 

To facilitate the optimization process, all performance metrics are normalized to ensure fair comparison across 
different measures. This step standardizes the data, allowing each metric (inference time, memory usage, CPU usage, 
GPU usage, and accuracy) to be evaluated on a common scale without distorting the underlying value ranges. This is 

crucial for balancing different performance metrics and ensuring no single metric disproportionately influences the 
optimization. 

 

4.1 FITNESS FUNCTION DEFINITION 

The fitness function optimizes accuracy and performance by lowering inference time, memory, CPU, and GPU 

usage. This method assures that the chosen configuration is accurate and resource-efficient. Fitness function: 

 Fitness Accuracy InferenceTime MemoryUsage CPU Usage GPU                                 (1) 

This fitness function prioritizes correctness but penalizes resource-intensive solutions, ensuring the optimum solution 

is accurate and resource-efficient. OS-DL combinations with higher fitness values perform better. 
 

4.2 MOUNTAIN GAZELLE OPTIMIZER (MGO) 

The Mountain Gazelle Optimizer (MGO) is employed to identify the optimal configuration through iterative 
refinement. This optimizer mimics the movement of gazelles, leveraging exploration and exploitation strategies to refine 

the population of solutions and converge towards the best-performing combination. 
• Output Result: The fitness value, where higher is better, is used to rank OS-DL combinations. 
• Input Data: The optimizer requires normalized input data to ensure that the optimization process is balanced across 

different performance metrics. 
• Non-Functional Requirements: 

• Computation Efficiency: MGOs must efficiently handle huge datasets with multiple OS-DL combinations. 
• Scalability: The method should scale to OS-DL combinations, making it ideal for complicated real-world 
environments like autonomous vehicles. 

This framework helps the MGO select the best OS-DL combo for high performance and minimal resource usage in 
limited contexts like autonomous car systems. 
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FIGURE 1. - Flowchart of the O ptimization Framework for O S-DL Performance 

 

 
 

FIGURE 2. - Use Case Diagram of the Proposed Optimization Method  
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Table 2. - Primary User and Optimization Framework Interactions  

Input parameters  

0 Accuracy 
1 Inference Time 

2 Memory Usage 
3 CPU Usage 
4 GPU Usage 

 

5. RESULTS AND DISCUSSION 

The Mountain Gazelle Optimization (MGO) algorithm iterates a limited number of times during optimization. 
Iterations develop new solutions based on mountain gazelle simulations. Each solution is located by random variables 

and a control parameter (F) that decreases exponentially over iterations. Changing jobs for better ones is fine. New 
position upgrades improve ideal solution and fitness. The given iterations get the best optimization outcome. 

 
5.1 BEST SOLUTION 

The MGO approach finds the best OS-DL combination in Table 3. 

Table 3. - The test solution details 

Attribute Value 

OS Ubuntu 
Algorithm RCNN 

Inference Time 15.854643 
Memory Usage 2719.192 

CPU Usage 78.845194 

GPU Usage 52.759563 
Accuracy 94.176230 

Best Solution: 32 
Best Fitness: -0.13815224415132976 

 

 
 

FIGURE 3. - Memory Usage Comparison of Deep Learning Algorithms Across Different Operating Systems 
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FIGURE 4. - Inference Time Comparison of Deep Learning Algorithms Across Different Operating Systems 

Table 4. - Results discussion 

Best solution index 32 

Best fitness -0.13815224415132976 

                           Best solution details 
OS Ubuntu 

Algorithm RCNN 
Inference Time 15.854643368675156 
Memory Usage 2719.192204002097 

CP Usage 78.84519423131795 
GPU Usage 21.00754420408291 
Accuracy 91.18218063316262 

 

MGO found Ubuntu-RCNN the best OS-DL combo. With minimal inference time, memory, and CPU/GPU 
utilization, accuracy was maximized. The results demonstrate that the MGO algorithm balances numerous performance 

measures to find an optimal solution. With real-world data and deeper learning algorithms, the conclusions and approach 
may be strengthened. 

 

6. CONCLUSION 

This study presents a new optimization framework for autonomous car operating systems' deep learning algorithms. 
Our top accuracy-resource-efficiency setups were found using the Mountain Gazelle Optimization (MGO) method.  

The proposed methodology, which includes synthetic performance data generation and normalization, provides a 
reproducible environment for assessing multiple performance indicators simultaneously. The results show that this 
approach significantly improves both computational efficiency and system accuracy. Future work can build upon these 

findings by incorporating real-world data and exploring additional deep-learning algorithms and operating systems. 
The key contributions of this study include the introduction of MGO as an effective tool fo r balancing performance 

metrics across deep learning algorithms and operating systems. This work sets the foundation for future research into 
more advanced optimization techniques, particularly in real-world applications involving autonomous systems. Our 
approach provides actionable insights for developers and researchers, emphasizing the importance of a holistic evaluation 

of system performance in autonomous vehicle technology. 
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