

*Corresponding author: Jammal.hasoon@uomustansiriyah.edu.iq
http://journal.alsalam.edu.iq/index.php/ajest

113

Al-Salam Journal for Engineering and Technology
Journal Homepage: http://journal.alsalam.edu.iq/index.php/ajest

e-ISSN: 2790-4822 p-ISSN: 2958-0862

A Mountain Gazelle Optimization (MGO) for Enhancing the

Deep Learning Performance in Various Operating Systems

Jamal Nasir Hasoon1 *, Yasmin Makki Mohialden1 , Firas Ali Hashim1

1Department of Computer Science, College of Science, Mustansiriyah University, Baghdad, IRAQ.

*Corresponding Author: Jamal Nasir Hasoon

DOI: https://doi.org/10.55145/ajest.2025.04.01.011
Received July 2024; Accepted September 2024; Available online October 2024

1. INTRODUCTION

Accelerating autonomous vehicle technology has spurred research to improve system performance and economy.
Advanced deep learning algorithms help autonomous cars see and interact with their environment. Understanding that

the operating system heavily impacts these algorithms' performance is crucial. Optimal performance in autonomous cars
requires rigorous assessment and optimization of deep learning algorithms across operating systems, a critical insight

that this study provides.
According to recent studies, optimizing inference time, memory use, CPU and GPU utilization, and accuracy is

crucial for efficient and reliable autonomous car systems. However, research typically isolates components, failing to

examine and enhance the complete system. In contrast, our study takes a comprehensive approach, considering all these
factors to ensure the robustness of the autonomous car system [1-4]. This paper proposes a new optimization methodology
that uses synthetic performance measure generation and the Mountain Gazelle Optimizer (MGO) to find the best deep

learning algorithm-operating system combo. An effective autonomous vehicle system requires a balanced technique that
examines various performance indicators simultaneously. This approach provides useful information. Synthetic data

provides a controlled and reproducible assessment environment, especially during s ystem development. The MGO
method, which solves difficult optimization problems through iterative refinement and adaptive search techniques, finds
the optimum configurations that balance accuracy and resource usage [4-6]. The contributions of this work represent

firstly; performance measurements for deep learning algorithm-OS pairings, secondly using of the Mountain Gazelle
Optimizer to identify optimal configurations that balance multiple performance metrics, and thirdly Provision of a
comprehensive analysis of the best-performing configurations, offering practical insights for developers and researchers

in the autonomous vehicle domain. This optimization framework bridges the gap between isolated performance
evaluations and holistic system optimization, paving the way for more efficient and reliable autonomous vehicle systems.

Mountain Gazelle Optimization (MGO) is a metaheuristic algorithm inspired by the behavior of mountain gazelles
in nature. These animals demonstrate agility and swiftness when avoiding predators or searching for food, characteristics

ABSTRACT: This study introduces a novel optimization framework that assesses and enhances deep learning
algorithm performance across autonomous car operating systems. The framework generates synthetic performance

measures, including inference time, memory use, CPU/GPU utilization, and accuracy, to evaluate algorithm
performance. By employing the Mountain Gazelle Optimizer (MGO), the study identifies the best deep learning
algorithm and operating system setup for accuracy and resource efficiency. The proposed methodology normalizes

performance indicators, defines a fitness function to assist optimization, and then iterates through numerous
configurations to discover the optimum option. Extensive trials and scenario comparisons validate the effectiveness

of our approach. Computational efficiency and accuracy improved significantly, revealing the ideal autonomous car
system performance combinations. This study not only enhances deep learning optimization but also provides
practical instructions for building robust autonomous car systems in varied operating contexts, thereby informing the

development of future autonomous vehicles and offering actionable insights for developers and researchers in the
field.

Keywords: Autonomous vehicles, deep learning algorithms, mountain gazelle optimizer (MGO)

https://doi.org/10.55145/ajest.2025.04.01.011
https://orcid.org/0000-0003-0338-1200
https://orcid.org/0000-0003-2401-0505
https://orcid.org/0000-0001-6131-2022

Jamal Nasir Hasoon et al., Al-Salam Journal for Engineering and Technology Vol. 4 No. 1 (2025) p. 113-123

 114

that translate into optimization through efficient exploration and exploitation of the solution space. MGO utilizes these
traits to refine solutions iteratively, balancing speed and accuracy. It is suitable for solving complex optimization

problems by minimizing or maximizing specific objectives, such as resource usage or accuracy.

2. LITERATURE REVIEW

Kebria et al. in 2020: It is difficult to give autonomous systems enough and good task information. To drive well,
autonomous cars need a solid workspace vision. In machine vision, deep learning and convolutional neural networks are
the cutting-edge. Researchers are worldwide studying how to create an ideal architecture for deep learning systems, which

include millions of parameters and components. In this study, the number of layers, filters, and filter size of convolutional
networks are tested for performance. Multiple models with diverse attributes are built, equally trained, and applied to an

autonomous automobile in a realistic simulated scenario. Calculating and updating model weights for mean squared error
values using a novel ensemble technique is also suggested. Performance is evaluated and contrasted based on design
features for future study. Remarkably, filter count does not affect performance efficiency. Allocating filters with varying

kernel sizes over layers improves performance significantly. The results of this study will help researchers develop ideal
network designs for deep learning. Convolutional neural networks for autonomous cars perform better when filters with
varied kernel sizes are allocated across layers [7].

Khan Muhammad et al. in 2020: Information and signal processing technologies improve autonomous driving (AD)
safety while reducing human driver effort using sophisticated artificial intelligence (AI) approaches. Recently, deep

learning (DL) has addressed various hard real-world challenges. However, their AD control strengths have not been well
researched and recognized. DL architectures are reliable and efficient in real time, and this study covers state-of-the-art
safe AD techniques and their strengths and weaknesses. It also covers measurement, analysis, and execution of DL

throughout the AD pipeline, focusing on sensor and vision-based road, lane, vehicle, pedestrian, sleepiness detection,
collision avoidance, and traffic sign detection. They also evaluate numerous evaluated approaches using different metrics
and criticize their merits and downsides. Finally, this review discusses safe DL-based AD concerns and suggests future

research, providing a reference for beginners and academics interested in this lively field of Intelligent Transportation
Systems. Current constraints and future research suggestions must be addressed to increase autonomous driving safety

using deep learning [8].
Huang et al. in 2020: This work uses deep learning and multimodal sensor fusion to improve end-to-end autonomous

driving scene knowledge and generalization. The end-to-end deep neural network receives the visual image and depth

information in an early fusion stage. It produces pixel-wise semantic segmentation for scene understanding and vehicle
control. In high-fidelity simulated urban driving situations, the end-to-end deep learning-based autonomous driving
model is evaluated against CoRL2017 and NoCrash. The suggested strategy outperforms the previous models in static

navigation tasks in training and unobserved settings and in additional tasks, with a 100% success rate. Another ablation
investigation indicates that the model without multimodal sensor fusion or scene comprehension pales in the new

environment due to erroneous perception. The findings show that multimodal sensor fusion with scene comprehension
subtask improves our model's performance, proving the deep neural network's practicality and efficacy. The deep neural
network with multimodal sensor fusion increases autonomous driving and generalization, attaining 100% static

navigation success compared to previous models [9].
Jamil Fayyad et al. in 2020: AVs are projected to transform terrestrial transportation. Smart cars that can make

judgments and drive themselves are expected to replace regular automobiles. Self-driving cars employ 5G connections

and sensors to see and understand their surroundings and the distant environment. Meanwhile, local perception, like
human perception, will benefit short-range vehicle control. Extended perception enables remote event anticipation and

intelligent behavior to take the vehicle to its destination while meeting s afety, energy management, traffic optimization,
and comfort objectives. Even though sensor technologies have improved in effectiveness and applicability for AV
systems in recent years, sensors can still fail due to noise, ambient conditions, or manufacturing defects, so using a single

sensor for autonomous driving tasks is not recommended. The practical approach is to use many competing and
complementary sensors that work together to overcome their flaws. This article reviews cutting -edge strategies for
improving AV performance in short-range or local vehicle situations. Recent works using deep learning sensor fusion

algorithms for perception, localization, and mapping are highlighted. The paper finishes with current trends and future
research directions. Multisensor deep learning sensor fusion techniques increase autonomous vehicle perception and

localization by overcoming sensor deficiencies and improving safety, energy management, and traffic optimization [10].
Nguyen Quang Hieu et al. in 2021: In dynamic conditions, autonomous vehicles (AVs) must function safely and

effectively. AVs with Joint Radar-Communications (JRC) features can improve driving safety by using radar detection

and data exchange. However, maximizing the AV system's performance with two functions in unpredictable and dynamic
contexts is difficult. We first present an intelligent optimization methodology based on the Markov Decision Process
(MDP) to assist the AV choose JRC operating functions in a dynamic and unpredictable environment. Our system uses

current deep reinforcement learning improvements to identify the ideal AV policy without previous environment
knowledge. Our system is more scalable because we add a Transfer Learning (TL) method that lets the AV use its past

experiences to speed up training in a new environment. The proposed transferable deep reinforcement learning framework
decreases AV obstacle miss detection probability by 67% compared to standard deep reinforcement learning systems,

Jamal Nasir Hasoon et al., Al-Salam Journal for Engineering and Technology Vol. 4 No. 1 (2025) p. 113-123

 115

according to extensive simulations. From driver assistance to complete automation, our technology may be used in many
autonomous driving scenarios using deep reinforcement learning and transfer learning. This transportable deep

reinforcement learning system decreases autonomous vehicle obstacle miss detection probability by up to 67% compared
to standard methods, benefiting diverse driving scenarios [11].

Yu et al. in 2021: A combination of autonomous and manual cars will likely remain in the intelligent transportation

system (ITS) for decades. Thus, before driverless vehicles become mainstream, safety risks from this combination of
autonomous and manual vehicles must be addressed. As the ITS system has become more complicated, autonomous cars

have challenges including low intention recognition and poor real-time driving direction prediction, which threaten mixed
traffic system safety and comfort. For autonomous cars to forecast driving direction in real time based on the traffic
situation, researchers must develop a more sophisticated ITS. We offer a deep learning-based traffic safety solution for

5G-enabled ITSs with autonomous and manual cars in this study. This technique uses a driving trajectory dataset and a
natural-driving dataset as network inputs to long-term memory networks in 5G-enabled ITS. The SoftMax function
calculates the probability matrix of each intention. Fusing the mean rule in the decision layer yields the final intention

probability. Experimental results reveal that the suggested system improves accuracy, real-time intention detection, and
the lane change problem in mixed traffic environments with intention recognition rates of 91.58% and 90.88% for left

and right lane changes, respectively. The deep learning-based traffic safety solution enhances autonomous vehicle
intention recognition rates, improving safety and comfort in mixed traffic [12].

Yang et al. in 2021: Autonomous systems are widely used in daily life as civilization advances. Due to this tendency,

autonomous cars are becoming more popular. In edge computing settings, insufficient computing force and
communication bandwidth and the absence of autonomous decision-making capabilities reduce autonomous vehicle
safety. A deep reinforcement learning (DRL) method combining DL with RL can give quick convergence and effective

decision-making. We present a double bootstrapped SAC-D (DBSAC-D) method based on soft-actor–critic (SAC) and
SAC-discrete (SAC-D). Introduce Bootstrap to improve action space exploration, properly estimate action value,

accelerate convergence, and decrease computing force consumption. We also suggest a unique sampling technique that
balances novelty and relevance of sampled data and increases network model training value. The experimental findings
demonstrate that our method performs well in many traffic situations and converges quickly. The double bootstrapped

SAC-D method increases exploration, judgment, and data balancing for autonomous vehicle safety and convergence
speed [13].

Pavel et al. in 2022: Autonomous vehicle systems (AVS) have grown exponentially in the past decade, especially

owing to artificial intelligence advances, affecting social, road, and transportation systems. Due to sensor fusion costs
and a lack of top-tier road uncertainty solutions, the AVS is still distant from mass manufacturing. Deep learning-based

techniques may be preferable for producing practical AVS to minimize sensor reliance, boost production, and improve
research. We reviewed the literature on deep learning for AVS over the past decade for real-world application in key
disciplines with this goal in mind. The systematic review of AVS implementing deep learning covers perception analysis

(vehicle detection, traffic signs and light identification, pedestrian detect ion, lane and curve detection, road object
localization, traffic scene analysis), decision making, end-to-end controlling and prediction, path and motion planning,
and augmented reality-based HUD, analyzing R-based research from 2011 to 2021. The literature is also analyzed for

final representative outcomes like AR-HUD visualization for early warning, road markings for improved navigation, and
enhanced safety with overlapping on vehicles and pedestrians in extreme visual conditions to reduce collisions. The

literature study analyzes state-of-the-art deep learning approaches that use RGB camera vision rather than complicated
sensor fusion. It should enable the quick development of cost-effective and secure autonomous vehicle systems. Deep
learning-based RGB camera vision can quickly construct cost-effective and secure practical autonomous car systems,

increasing perception, decision-making, and safety [14].
Lu et al. in 2023: Safety is paramount for autonomous cars in their ever-changing environment. However,

autonomous vehicle operation is complex and unclear. An autonomous vehicle must avoid static and dynamic barriers in

the operating environment. Environmental configuration techniques for autonomous cars have shown promise. However,
they are ineffective in a constantly changing environment. Thus, autonomous vehicles must be tested in realistic,

constantly changing environments to avoid crashes. Agents actively interact with the environment, making
Reinforcement Learning (RL) promising for complex tasks requiring environmental adaptation. We propose Deep
Collision, an RL-based environment configuration learning system that intelligently learns autonomous vehicle crash-

causing environment configurations. The reward function in Deep Collision is built using Deep Q-Learning as the RL
solution and collision probability as the safety measure. Four Deep Collision models were trained and compared to
random and greedy baselines. We found that Deep Collision generated more collisions than baselines. We propose

selecting the best Deep Collision time for different road constructions. An RL-based environment configuration learning
system, Deep Collision, helps autonomous cars avoid collisions in constantly changing settings [15].

Li et al. in 2023: For continuous adaption of Deep Reinforcement Learning (DRL) models in dynamic situations,
autonomous cars and robotic search and rescue require effective on-device training. Our comprehensive practical
experiments show that on-device real-time DRL requires balancing timing and algorithm performance under memory

limits, which motivates our research. The batch and replay buffer sizes for DRL training need to be co-optimized because
of this careful balance. Both time and algorithm speed are greatly affected by how these settings are set up, but both

Jamal Nasir Hasoon et al., Al-Salam Journal for Engineering and Technology Vol. 4 No. 1 (2025) p. 113-123

 116

require a lot of memory. This study walks you through R3, a complete way to control timing, memory, and algorithm
performance in device-based real-time DRL training. To make timing, memory footprint, and replay buffer sizes as good

as possible, R3 has a deadline-driven feedback loop, good memory management, and a runtime planner with heuristic
analysis and a profiler. By working together, these parts make on-device DRL training faster, better at running algorithms,
and less likely to make out-of-bounds errors. Using several DRL frameworks and benchmarks, we put R3 through a lot

of tests on three hardware platforms that are used by autonomous robotic systems. And to show how useful it is, we
connect R3 to a famous self-driving simulator. R^3 works well on many systems, with consistent latency and predictable

time with little extra work. It improves timing, memory, and algorithm performance in on -device real-time Deep
Reinforcement Learning for self-driving robots, making mistakes due to lack of memory less likely [16].

A lot of study has been done on how to make deep learning algorithms work best for self-driving car systems, but

there are still some gaps. Most research only looks at certain parts of a system, like accuracy or inference time, without
looking at how well it works as a whole, taking into account things like memory usage, CPU and GPU utilization, and
accuracy. Furthermore, not a lot of study has been done on synthetic performance measures that offer scalable and

repeatable settings for improvement. To fill in these gaps, this study suggests a way to optimize that looks at and balances
all performance indicators at the same time.

3. METHODOLOGY

This research presents a novel approach to improve autonomous car deep learning algorithm performance across

operating systems. Synthetic performance data generation and the Mountain Gazelle Optimizer (MGO) determine the
best OS and DL algorithm configurations based on inference time, memory usage, CPU usage, GPU usage, and accuracy.
The proposed Methodology contains the following steps:

 Step 1: Generate Synthetic Data Instead of hardware testing, we can mimic real-world events using synthetic data to
evaluate OS and DL pairings. Included OS and DL algorithms :
• Operating Systems (OS): Windows, Linux, macOS, Ubuntu, Fedora, Debian, CentOS, RHEL, Arch, and Manjaro.

• Deep Learning Algorithms (DL): YOLO, SSD, RCNN, Faster RCNN, DeepLab, UNet, MobileNet, and others.
For each combination, synthetic metrics are generated for:

• Inference Time (ms): Time taken for the algorithm to make predictions.
• Memory Usage (MB): Memory consumption during execution.
• CPU Usage (%): Percentage of CPU resources used.

• GPU Usage (%): GPU resource consumption.
• Accuracy (%): Prediction accuracy.

 These metrics depict a variety of operating scenarios by using random system load values.

 Step 2: Data-normalization Dataset min-max normalization ensures fair comparisons across measures. This ensures
no metric dominates optimization.

 Step 3: Define Fitness Function Fitness maximizes accuracy while conserving resources. The formula is:
 Fitness=Accuracy−(Inference Time+Memory Usage+CPU Usage+GPU Usage)
 This fitness function ensures that the selected configuration balances accuracy and resource efficiency.

 Step 4: Mountain Gazelle Optimization (MGO) Mountain gazelle behavior influenced the MGO algorithm.
 It optimizes OS-DL combinations iteratively using the fitness function:

• Initialization: Random selection of OS-DL combinations, followed by fitness evaluation.

• Iterative Refinement: New solutions are generated using exploration and exploitation strategies, mimicking gazelle
movement.

• Convergence: The process continues for a set number of iterations or until no significant improvement is observed.
 Step 5: Results The MGO algorithm found Ubuntu-RCNN to be the best. Together, this accomplished:

• Inference Time: 15.85 ms.

• Memory Usage: 2719.19 MB.
• CPU Usage: 78.85%.
• GPU Usage: 52.76%.

• Accuracy: 94.18%.
The combination balances accuracy and resource consumption well, making it suited for resource-constrained

autonomous vehicle systems.
The MGO algorithm and synthetic data optimize deep learning models in real-world autonomous car applications in

this framework. This strategy appears to be efficient for real-time systems with limited processing resources. With more

real-world data and DL algorithms, the outcomes will improve.

Jamal Nasir Hasoon et al., Al-Salam Journal for Engineering and Technology Vol. 4 No. 1 (2025) p. 113-123

 117

3.1 GENERATION OF SYNTHETIC PERFORMANCE METRICS

This stage generates synthetic data for OS-DL algorithm combinations. Inference time, memory, CPU, GPU, and

accuracy are performance measures. Synthetically created measurements represent 10 operating systems and 10 deep
learning methods. Table 1 lists OS-DL combinations and their performance metrics.

The following metrics are calculated for each combination:

• Inference Time (ms): Time required for the DL algorithm to process data and generate predictions.
• Memory Usage (MB): The amount of memory consumed during execution.

• CPU Usage (%): The percentage of CPU resources used by the algorithm.
• GPU Usage (%): GPU resources consumed during execution.
• Accuracy (%): The percentage of correct predictions made by the DL algorithm.

The generation of synthetic performance measurements uses random sampling within predetermined ranges to
simulate real-world performance for each OS and DL combination. The synthetic data table format is below:

Random Value 1, 2, 3, etc.: Each of these represents a unique random value within a specified range for a given

metric.
Table 1 quick comparison between different OS and DL combinations based on their synthetic performance metrics.

Table 1. - Synthetic Performance Metrics for OS-DL Combinations

OS Algorithm
Inference time

(ms)
Memory usage

(MB)
CPU usage

(%)
GPU usage

(%)
Accuracy

(%)

Windows CNN 637.0861 7704.286 86.5997 61.90609 86.56019

Windows RNN 571.594 2848.502 93.97793 61.0669 89.91302

Windows LSTM 369.5553 8019.459 90.29236 42.31567 84.54555

Windows GAN 701.745 4555.878 79.51501 56.59725 75.82458

Windows Transformer 1273.038 3836.963 71.68579 58.31809 89.73642

Windows DNN 1185.176 3498.043 73.14055 57.5828 85.41805

Windows Autoencoder 866.4131 3106.092 47.92732 72.1887 91.58758

Windows VAE 1298.817 4427.683 59.10223 67.00128 82.60229

Windows CapsNet 672.0382 5721.544 58.40993 79.28466 81.8817

Windows ResNet 1096.27 4301.438 75.36292 57.06907 89.10913

Linux CNN 1172.626 6650.797 96.97495 82.63791 90.979

Linux RNN 1414.062 3030.955 63.81923 27.71364 84.55462

Linux LSTM 719.2434 3828.094 90.12193 50.69169 85.93308

Linux GAN 1096.966 3559.638 90.89008 38.72753 89.73774

Linux Transformer 1449.469 4192.294 60.22088 80.77307 91.24114

Linux DNN 1129.007 6927.622 53.33201 44.71562 86.04282

Linux Autoencoder 1083.638 5777.459 59.89041 23.49571 83.73179

Linux VAE 791.4425 6977.637 81.77741 78.57113 83.08322

Linux CapsNet 669.5942 7008.144 88.19219 61.18641 89.56451

Linux ResNet 944.416 5588.67 71.38426 28.39805 88.64735

macOS CNN 328.2863 5818.462 65.7178 55.59995 94.07566

macOS RNN 674.2215 4962.298 88.9998 38.72789 81.07772

macOS LSTM 625.2639 3167.328 94.76609 76.87098 90.86765

macOS GAN 1458.607 7602.4 65.64937 79.62795 80.78684

macOS Transformer 1488.184 8376.548 72.72014 45.5026 88.36761

macOS DNN 827.1078 7208.089 88.73288 25.38237 89.59673

macOS Autoencoder 704.7994 3410.436 50.39394 38.56883 91.31492

macOS VAE 789.3631 5712.744 84.5268 48.72689 90.57673

macOS CapsNet 1512.447 4285.516 77.38719 47.64567 82.27261

macOS ResNet 533.1983 6118.342 74.6152 29.83133 89.67188

Ubuntu CNN 1117.439 3437.371 57.24474 54.26169 94.8565

Ubuntu RNN 666.2608 6532.813 89.27288 39.25825 90.19503

Jamal Nasir Hasoon et al., Al-Salam Journal for Engineering and Technology Vol. 4 No. 1 (2025) p. 113-123

 118

OS Algorithm
Inference time

(ms)
Memory usage

(MB)
CPU usage

(%)
GPU usage

(%)
Accuracy

(%)

Ubuntu LSTM 699.394 5993.835 81.14237 61.07493 83.26406

Ubuntu GAN 1418.833 4656.758 65.64726 37.03876 81.81786

Ubuntu Transformer 1345.321 3099.527 80.48372 51.32479 90.87104

Ubuntu DNN 574.3664 6445.626 67.40309 76.52015 86.23769

Ubuntu Autoencoder 639.9064 2769.494 86.61121 68.25366 83.0953

Ubuntu VAE 1142.983 7503.333 78.31843 58.19008 79.62778

Ubuntu CapsNet 643.1028 8093.573 93.91714 64.92128 83.08545

Ubuntu ResNet 814.2886 6828.33 91.57574 75.78975 92.67925

Fedora CNN 877.8285 2504.84 58.08144 82.89879 91.06429

Fedora RNN 410.1168 3108.829 84.85758 25.3037 82.25131

Fedora LSTM 871.2971 6351.371 81.99022 43.00762 91.97051

Fedora GAN 760.974 4684.938 88.60615 67.48164 86.98447

Fedora Transformer 1323.374 6409.852 63.74699 58.38579 88.59121

Fedora DNN 643.9896 8138.063 67.6894 74.06256 90.68025

Fedora Autoencoder 1025.59 5065.559 70.96067 47.08847 82.34292

Fedora VAE 1208.575 4284.634 56.02127 64.79192 78.65666

Fedora CapsNet 1490.459 8428.179 94.50944 51.24825 78.23185

Fedora ResNet 1335.487 5011.923 94.56616 79.9991 93.11806

Debian CNN 565.004 4310.586 92.55683 42.18454 86.69493

Debian RNN 1012.481 8116.929 86.32134 59.20367 81.36047

Debian LSTM 934.2569 8140.323 58.44386 60.06312 94.28322

Debian GAN 1314.845 6951.796 86.80185 52.97456 75.87184

Debian Transformer 1490.297 7860.68 94.68289 85.66203 90.06805

Debian DNN 901.5163 7089.771 79.24838 63.60818 92.16213

Debian Autoencoder 1106.505 4094.171 61.90123 25.16901 86.93936

Debian VAE 487.7394 5393.588 77.79107 44.33285 84.8625

Debian CapsNet 580.5002 3020.354 90.72662 50.72991 79.90591

Debian ResNet 970.0189 7096.961 62.2803 61.25898 88.51208

CentOS CNN 346.5135 5188.128 77.03176 64.62009 92.26091

CentOS RNN 1473.437 5597.802 69.53304 72.71117 83.79165

CentOS LSTM 767.0228 2670.738 53.16613 85.83361 93.70372

CentOS GAN 1265.572 5194.613 65.10507 42.82185 75.00486

CentOS Transformer 1204.149 7287.576 86.4079 53.99669 92.72919

CentOS DNN 1137.897 5626.124 77.52743 48.078 87.22958

CentOS Autoencoder 652.5768 6571.292 45.64771 26.384 80.55203

CentOS VAE 492.7652 7732.764 84.55363 55.02791 77.46751

CentOS CapsNet 1041.616 5593.483 64.10128 54.56029 83.97757

CentOS ResNet 1054.265 6274.071 54.94807 47.60369 91.75516

RHEL CNN 752.8226 7138.939 82.93468 31.40541 85.70569

RHEL RNN 1106.661 2659.068 81.3599 81.41381 88.05664

RHEL LSTM 718.7614 6059.729 73.07963 61.64577 95.18051

RHEL GAN 924.7129 8563.262 95.11938 44.78956 71.38723

RHEL Transformer 710.8558 3109.331 63.77772 74.15034 87.42713

RHEL DNN 718.9756 7369.252 51.04724 69.79577 87.53669

RHEL Autoencoder 450.4401 6210.749 73.30243 68.26096 88.82085

RHEL VAE 1293.655 4292.207 62.45246 70.78504 88.10252

Jamal Nasir Hasoon et al., Al-Salam Journal for Engineering and Technology Vol. 4 No. 1 (2025) p. 113-123

 119

OS Algorithm
Inference time

(ms)
Memory usage

(MB)
CPU usage

(%)
GPU usage

(%)
Accuracy

(%)

RHEL CapsNet 1540.505 5234.444 72.25274 72.37347 83.11205

RHEL ResNet 1337.682 7636.318 71.44674 68.29791 92.52726

Arch CNN 392.8115 7415.317 75.26262 77.85202 88.2005

Arch RNN 1385.076 4835.21 55.48769 79.32292 81.27801

Arch LSTM 653.348 7900.372 95.72793 63.2594 90.84572

Arch GAN 993.2901 4488.586 71.47525 68.62592 85.04749

Arch Transformer 1470.737 7737.709 63.64824 64.72102 87.34535

Arch DNN 949.5289 4949.183 89.94669 44.30033 86.0536

Arch Autoencoder 471.5429 6592.913 72.81981 25.56175 81.00928

Arch VAE 1186.018 3036.578 89.51812 68.25581 77.22023

Arch CapsNet 634.8377 8621.174 72.3451 51.27339 90.19199

Arch ResNet 1352.524 8414.606 85.39526 47.69428 88.501

Manjaro CNN 999.4322 5350.425 71.2111 83.44481 86.11197

Manjaro RNN 941.8876 2568.122 76.08973 28.3782 81.66345

Manjaro LSTM 461.6499 6095.262 86.31806 63.83539 95.47042

Manjaro GAN 912.3576 4442.844 93.61256 46.17979 89.26445

Manjaro Transformer 613.3699 8819.273 61.7264 84.55716 90.16621

Manjaro DNN 1392.965 2742.779 74.92344 78.31164 89.70788

Manjaro Autoencoder 884.9888 6204.917 65.45435 54.51569 87.01177

Manjaro VAE 1396.216 2872.678 66.80045 82.17345 89.35396

Manjaro CapsNet 1005.657 6458.782 68.37263 41.7823 84.95548

Manjaro ResNet 818.017 5960.302 56.34259 80.59171 93.91726

4. DATA NORMALIZATION

To facilitate the optimization process, all performance metrics are normalized to ensure fair comparison across
different measures. This step standardizes the data, allowing each metric (inference time, memory usage, CPU usage,
GPU usage, and accuracy) to be evaluated on a common scale without distorting the underlying value ranges. This is

crucial for balancing different performance metrics and ensuring no single metric disproportionately influences the
optimization.

4.1 FITNESS FUNCTION DEFINITION

The fitness function optimizes accuracy and performance by lowering inference time, memory, CPU, and GPU

usage. This method assures that the chosen configuration is accurate and resource-efficient. Fitness function:

 Fitness Accuracy InferenceTime MemoryUsage CPU Usage GPU (1)

This fitness function prioritizes correctness but penalizes resource-intensive solutions, ensuring the optimum solution

is accurate and resource-efficient. OS-DL combinations with higher fitness values perform better.

4.2 MOUNTAIN GAZELLE OPTIMIZER (MGO)

The Mountain Gazelle Optimizer (MGO) is employed to identify the optimal configuration through iterative
refinement. This optimizer mimics the movement of gazelles, leveraging exploration and exploitation strategies to refine

the population of solutions and converge towards the best-performing combination.
• Output Result: The fitness value, where higher is better, is used to rank OS-DL combinations.
• Input Data: The optimizer requires normalized input data to ensure that the optimization process is balanced across

different performance metrics.
• Non-Functional Requirements:

• Computation Efficiency: MGOs must efficiently handle huge datasets with multiple OS-DL combinations.
• Scalability: The method should scale to OS-DL combinations, making it ideal for complicated real-world
environments like autonomous vehicles.

This framework helps the MGO select the best OS-DL combo for high performance and minimal resource usage in
limited contexts like autonomous car systems.

Jamal Nasir Hasoon et al., Al-Salam Journal for Engineering and Technology Vol. 4 No. 1 (2025) p. 113-123

 120

FIGURE 1. - Flowchart of the O ptimization Framework for O S-DL Performance

FIGURE 2. - Use Case Diagram of the Proposed Optimization Method

Jamal Nasir Hasoon et al., Al-Salam Journal for Engineering and Technology Vol. 4 No. 1 (2025) p. 113-123

 121

Table 2. - Primary User and Optimization Framework Interactions

Input parameters

0 Accuracy
1 Inference Time

2 Memory Usage
3 CPU Usage
4 GPU Usage

5. RESULTS AND DISCUSSION

The Mountain Gazelle Optimization (MGO) algorithm iterates a limited number of times during optimization.
Iterations develop new solutions based on mountain gazelle simulations. Each solution is located by random variables

and a control parameter (F) that decreases exponentially over iterations. Changing jobs for better ones is fine. New
position upgrades improve ideal solution and fitness. The given iterations get the best optimization outcome.

5.1 BEST SOLUTION

The MGO approach finds the best OS-DL combination in Table 3.

Table 3. - The test solution details

Attribute Value

OS Ubuntu
Algorithm RCNN

Inference Time 15.854643
Memory Usage 2719.192

CPU Usage 78.845194

GPU Usage 52.759563
Accuracy 94.176230

Best Solution: 32
Best Fitness: -0.13815224415132976

FIGURE 3. - Memory Usage Comparison of Deep Learning Algorithms Across Different Operating Systems

Jamal Nasir Hasoon et al., Al-Salam Journal for Engineering and Technology Vol. 4 No. 1 (2025) p. 113-123

 122

FIGURE 4. - Inference Time Comparison of Deep Learning Algorithms Across Different Operating Systems

Table 4. - Results discussion

Best solution index 32

Best fitness -0.13815224415132976

 Best solution details
OS Ubuntu

Algorithm RCNN
Inference Time 15.854643368675156
Memory Usage 2719.192204002097

CP Usage 78.84519423131795
GPU Usage 21.00754420408291
Accuracy 91.18218063316262

MGO found Ubuntu-RCNN the best OS-DL combo. With minimal inference time, memory, and CPU/GPU
utilization, accuracy was maximized. The results demonstrate that the MGO algorithm balances numerous performance

measures to find an optimal solution. With real-world data and deeper learning algorithms, the conclusions and approach
may be strengthened.

6. CONCLUSION

This study presents a new optimization framework for autonomous car operating systems' deep learning algorithms.
Our top accuracy-resource-efficiency setups were found using the Mountain Gazelle Optimization (MGO) method.

The proposed methodology, which includes synthetic performance data generation and normalization, provides a
reproducible environment for assessing multiple performance indicators simultaneously. The results show that this
approach significantly improves both computational efficiency and system accuracy. Future work can build upon these

findings by incorporating real-world data and exploring additional deep-learning algorithms and operating systems.
The key contributions of this study include the introduction of MGO as an effective tool fo r balancing performance

metrics across deep learning algorithms and operating systems. This work sets the foundation for future research into
more advanced optimization techniques, particularly in real-world applications involving autonomous systems. Our
approach provides actionable insights for developers and researchers, emphasizing the importance of a holistic evaluation

of system performance in autonomous vehicle technology.

FUNDING

None

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers for their efforts.

Jamal Nasir Hasoon et al., Al-Salam Journal for Engineering and Technology Vol. 4 No. 1 (2025) p. 113-123

 123

CONFLICTS OF INTEREST

The authors declare no conflict of interest

REFERENCES

[1] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, "A survey of deep learning techniques for autonomous
driving," Journal of Field Robotics, vol. 37, no. 3, pp. 362-386, 2020.

[2] K. Muhammad, A. Ullah, J. Lloret, J. Del Ser, and V. H. C. de Albuquerque, "Deep learning for safe autonomous

driving: Current challenges and future directions," IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 7, pp. 4316-4336, 2020.

[3] M. Capra, B. Bussolino, A. Marchisio, G. Masera, M. Martina, and M. Shafique, "Hardware and software
optimizations for accelerating deep neural networks: Survey of current trends, challenges, and the road ahead,"
IEEE Access, vol. 8, pp. 225134-225180, 2020.

[4] S. Paniego, N. Paliwal, and J. Cañas, "Model optimization in deep learning based robot control for autonomous
driving," IEEE Robotics and Automation Letters, vol. 9, no. 1, pp. 715-722, 2023.

[5] B. Narottama and S. Y. Shin, "Layerwise Quantum Deep Reinforcement Learning for Joint Optimization of

UAV Trajectory and Resource Allocation," IEEE Internet of Things Journal, vol. 11, no. 1, pp. 430-443, 2023.
[6] G. Wang, Z. Qin, S. Wang, H. Sun, Z. Dong, and D. Zhang, "Towards accessible shared autonomous electric

mobility with dynamic deadlines," IEEE Transactions on Mobile Computing, vol. 23, no. 1, pp. 925-940, 2022.
[7] P. M. Kebria, A. Khosravi, S. M. Salaken, and S. Nahavandi, "Deep imitation learning for autonomous vehicles

based on convolutional neural networks," IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 1, pp. 82-95,

2019.
[8] K. Muhammad, A. Ullah, J. Lloret, J. Del Ser, and V. H. C. de Albuquerque, "Deep learning for safe autonomous

driving: Current challenges and future directions," IEEE Transactions on Intelligent Transportation Systems,

vol. 22, no. 7, pp. 4316-4336, 2020.
[9] Z. Huang, C. Lv, Y. Xing, and J. Wu, "Multi-modal sensor fusion-based deep neural network for end-to-end

autonomous driving with scene understanding," IEEE Sensors Journal, vol. 21, no. 10, pp. 11781-11790, 2020.
[10] J. Fayyad, et al., "Deep learning sensor fusion for autonomous vehicle perception and localization: A review,"

Sensors, vol. 20, no. 15, p. 4220, 2020.

[11] N. Quang Hieu, D. T. Hoang, D. Niyato, P. Wang, D. In Kim, and C. Yuen, "Transferable Deep Reinforcement
Learning Framework for Autonomous Vehicles with Joint Radar-Data Communications," e-prints
arXiv:2105.13670 p. 17, 2021.

[12] K. Yu, L. Lin, M. Alazab, L. Tan, and B. Gu, "Deep learning-based traffic safety solution for a mixture of
autonomous and manual vehicles in a 5G-enabled intelligent transportation system," IEEE Transactions on
Intelligent Transportation Systems, vol. 22, no. 7, pp. 4337-4347, 2020.

[13] J. Yang, J. Zhang, M. Xi, Y. Lei, and Y. Sun, "A deep reinforcement learning algorithm suitable for autonomous
vehicles: Double bootstrapped soft-actor–critic-discrete," IEEE Transactions on Cognitive and Developmental

Systems, vol. 15, no. 4, pp. 2041-2052, 2021.
[14] M. I. Pavel, S. Y. Tan, and A. Abdullah, "Vision-based autonomous vehicle systems based on deep learning: A

systematic literature review," Applied Sciences, vol. 12, no. 14, p. 6831, 2022.

[15] C. Lu, et al., "Learning configurations of operating environment of autonomous vehicles to maximize their
collisions," IEEE Transactions on Software Engineering, vol. 49, no. 1, pp. 384-402, 2022.

[16] Z. Li, A. Samanta, Y. Li, A. Soltoggio, H. Kim, and C. Liu, "R³: On-Device Real-Time Deep Reinforcement

Learning for Autonomous Robotics," in 2023 IEEE Real-Time Systems Symposium (RTSS) , Taipei, Taiwan,
2023, pp. 131-144.

